Abstract

Using monthly gridded 500-hPa data, two synoptic indices are defined to better understand the principle mechanisms controlling intraseasonal to multiannual winter climate variability in NewEngland (NE). The “trough axis index” (TAI) is created to quantify the mean longitudinal position of the common East Coast pressure trough, and the “trough intensity index” (TII) is calculated to estimate the relative amplitude of this trough at 42.5°N. The TAI and TII are then compared with records for NE regional winter precipitation, temperature, and snowfall with the goal of understanding physical mechanisms linking NE winter climate with regional sea surface temperatures (SST), the North Atlantic Oscillation (NAO), and the Pacific–North American (PNA) teleconnection pattern. The TAI correlates most significantly with winter precipitation at inland sites, such that a western (eastern)trough axis position is associated with greater (lower) average monthly precipitation. Also, significant correlations between the TAI and both NE regional SSTs and the NAO suggest that longitudinal shifting of the trough is one possible mechanism linking the North Atlantic with NE regional winterclimate variability. The NE winter temperature is significantly correlated with the TII, regional SSTs, and the NAO. While the PNA also correlates with the TII, NE winter climate variables are apparently unrelated to the PNA index.

Department

Earth Sciences, Earth Systems Research Center

Publication Date

12-2002

Journal Title

Journal of Climate

Publisher

American Meteorological Society

Document Type

Article

Share

COinS