Title

Novel stable isotope laser spectrometry elucidates changing mechanisms of CH4 production and consumption across a climate change sequence in an arctic wetland

Abstract

Methane flux from high latitude wetlands is both a critical component of the global CH4 budget, and highly sensitive to global climate change, with expected increases in emissions as permafrost thaws. Gaps in our understanding of the mechanisms driving changing CH4 production and consumption dynamics under permafrost thaw, however, limit our ability to predict the magnitude of this response under future climate conditions. To address these gaps, we quantified the isotopic composition of carbon gas fluxes (δ13C of CH4 and CO2) from a high latitude (68° N) wetland in Sweden (Stordalen Mire) to partition net CH4 emissions into its component parts, methanogenesis (including both acetoclastic, and CO2-reductive pathways) and methanotrophy (which consumes CH4 primarily via aerobic metabolism). We used newly developed quantum cascade laser technology, linked to automated chambers, to quantify isotopes at high frequency. Our measurements across a permafrost thaw gradient, going from permafrost-dominated, well-drained palsas to intermediate permafrost sites dominated by Sphagnum spp. to wet sites with no underlying permafrost, dominated by Eriophorum angustifolium, show both large increases in productivity and CH4 emissions as well as shifts in the CH4 production pathway. Across this permafrost thaw gradient the isotopic composition of CH4 becomes 13C enriched, due to increased acetoclastic CH4 production. While the palsa sites have no detectable CH4 emissions, fluxes in the Sphagnum site have an average isotopic composition of -79‰, a value indicative of CH4 production dominated by CO2 reduction, in contrast the isotopic composition of CH4 produced in the Eriophorum sites ranged from -71 to -57‰, showing increased CH4 production via the acetate pathway. We also observed an increase in acetoclastic methanogenesis as the growing season progressed. Together, these initial results suggest that thaw induced changes in hydrology and plant community composition increase peat lability, stimulating acetate fermentation and yielding increased methane emissions. We conclude that the biological controls on metabolic pathways of methanogenesis, though poorly represented in most ecosystem models, may nonetheless be important, in interaction with permafrost thaw dynamics, in determining future CH4 emissions under changing climate.

Publication Date

12-2011

Journal Title

Fall Meeting, American Geophysical Union (AGU)

Publisher

American Geophysical Union Publications

Document Type

Conference Proceeding