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ABSTRACT 

EUCLIDEAN RECONSTRUCTION OF NATURAL UNDERWATER 

SCENES USING OPTIC IMAGERY SEQUENCE 

By 

Han Hu 

University of New Hampshire, September, 2015 

 

The development of maritime applications require monitoring, studying and preserving of 

detailed and close observation on the underwater seafloor and objects. Stereo vision offers 

advanced technologies to build 3D models from 2D still overlapping optic images in a 

relatively inexpensive way. However, while image stereo matching is a necessary step in 3D 

reconstruction procedure, even the most robust dense matching techniques are not guaranteed 

to work for underwater images due to the challenging aquatic environment. In this thesis, in 

addition to a detailed introduction and research on the key components of building 3D models 

from optic images, a robust modified quasi-dense matching algorithm based on correspondence 

propagation and adaptive least square matching for underwater images is proposed and applied 

to some typical underwater image datasets. The experiments demonstrate the robustness and 

good performance of the proposed matching approach. 
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Chapter I – INTRODUCTION 

1.1 Background 

1.1.1 The Human Vision System 

Image-based 3D reconstruction is one of the most significant and traditional research topics in 

computer vision and photogrammetry. In our daily life, we navigate through and interact with 

objects in 3D space. Our brain receives and interprets visual signals to locate objects and to 

coordinate our movements. Human beings use the Human Vision System (HVS) to convert the 

visual signals into the interpretation and understanding of surroundings. This wonderful and 

magical system has been both the inspiration and source of the research and realization of the 

advanced stereo vision systems in image-based 3D reconstruction [12]. The aim of stereo 

vision is to construct 3D scenes or objects to allow robot and computer to interact with the 

world. The basic principle of how human beings distinguish the distance to some object is easy 

to comprehend, as shown in Figure 1.  

The application areas would be huge if stereo vision technology can achieve accurate and fast 

automatic 3D reconstruction. Some simple examples are 3D game entertainment, autonomous 

driving and vision measurement. The importance of 3D information can be seen by its growth 

on most industrial and entertainment areas ranging from industrial design to stereo animation 

and movie. The fast development and evolution of different 3D computer applications have 

reflected the importance of 3D perceptions in human interactions. 

 



2 

 

 
Figure 1. Diagram of Stereo Vision showing curvature at several distances for human vision. 

 

1.1.2 Overview of Stereo Vision 

The source images used for 3D reconstruction may come either from a set of closely spaced 

photographic still images, a hand-held video camcorder, a multi-camera rig with rigidly 

coupled digital firewire cameras [2], or even from Internet photo collections [3]. Due to its 

relatively low cost, the image-based 3D reconstruction technique has been widely applied and 

investigated in many different areas, such as virtual reality, land surveying, simulation, and 

entertainment. Thus in recent decades, many algorithms and systems have been proposed to 

contribute to the development of image-based 3D reconstruction. Among all these techniques, 

the Structure from Motion (SfM) technique in Computer Vision industry has reached a degree 

of maturity with several commercial offerings, in addition to an extensive research literature 

[4]. The SfM is an image ranging technique which simultaneously reconstruct the unknown 3D 

scene structure, camera positions, camera orientations, and even camera calibration parameters, 

from a set of feature correspondences among images. It has developed from a simple two-frame 

relative orientation and reconstruction as a basic into more complicated multi-frame 

approaches. Now in some projects the images can even come from different sources with 

unfixed intrinsic parameters and can be unorganized and/or unordered [4]. Figure 2 shows the 

typical steps of underwater 3D reconstruction that have been exploited in previous works using 

the SfM technique.  
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Figure 2. The workflow of 3D reconstruction from image sequence. 

 

The integrated and fundamental theory has lead the SfM technique into the photogrammetry 

field for a wider research [5]. It has incorporated related techniques from photogrammetry such 

as bundle adjustment to perform optimal 3D reconstruction from a large set of images.  

The development of 3D computer vision algorithms also includes advances in image pre-
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processing, feature correspondences, image stereo matching [10], and image-based modeling 

[3]. Most sparse feature matching algorithms first extract a set of potentially “matchable” 

image locations, using either interest point operators or edge detectors, and then search for 

correspondences in other images using a patch-based metric. This sparse image matching 

strategy is partially due to the limited computational resources because it is almost impossible 

to match every pixel between two images without any prior knowledge. While the sparse 

matching algorithms are used to recover the geometry between camera frames, dense matching 

algorithms focus on determining dense correspondences (pixel to pixel) which are necessary 

for applications that require detailed surface models. However, due to challenging properties 

of the medium (water in our case), transferring the traditional standard dense matching methods 

to other environments seems to be a very challenging task [28]. Image rectification [11] is 

usually a necessary step in order to perform dense stereo matching. Most dense stereo matching 

algorithms require either the rectified image pair or the epipolar geometry as input.  

 

1.2 Purpose of Study 

1.2.1 Problems of 3D Reconstruction in Underwater Environment 

Typically there are two main approaches for 3D reconstruction, namely, laser scanning and 

image-based approaches [1]. Laser scanners are robust, their measurements are dense and 

accurate, but they are also costly and have certain restrictions on the size and the surface 

properties of the objects. The usage of laser scanners is limited by the distance that the laser 

can propagate in the aquatic environment as well. It is also known that the laser propagation 

path would be bent due to the changing density at different water depth causing deterioration 

of measurement accuracy and this system error is hard to calibrate. In addition, the calibration 

process for a laser device is usually more difficult and complicated than the calibration of a 

digital camera, especially in an aquatic environment. The reflection from suspended particles 
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and organisms in water also makes the laser scanned data noisy and harder to process. In recent 

years, optic sensors have been introduced into underwater vehicles or operated by divers to 

survey the seafloor or underwater objects. Comparing with the laser scanners, digital cameras 

have some significant advantages. With the advance of micro and nano electronics in the past 

few years, digital cameras have become significantly cheaper. They are able to produce high 

quality images with rich texture, which are important factors to the final reconstruction product. 

What is more, they are easier for the divers to operate than laser scanners and it is simpler to 

integrate them into underwater vehicles. In addition, image distortion parameters can be easily 

calibrated in the controlled environment to compensate for the imperfect linear propagation of 

underwater optic image rays. In other words, most drawbacks and limitations of underwater 

imaging system can be compensated by some in situ or post-processing strategies. The ease of 

image-based 3D reconstruction has attracted oceanographers’ interest. It is natural for 

oceanographers to investigate the advanced image-based reconstruction theory and algorithms 

in order to build 3D models for underwater objects or the seafloor. Underwater objects and 

structures like black smokers, ship wrecks, or coral reefs, which can only be observed by diving 

personally or operating a submersible, are difficult to study. However, divers or manned or 

unmanned underwater vehicles can be equipped with cameras which provide visual image 

sequences of underwater scenes or objects. The image-based techniques from the computer 

vision field can be utilized to compute 3D reconstruction and the product can be used for 

volumetric measurements, documentation or even presented to the general public [8]. Due to 

the totally different imaging environment, the underwater images have their specific properties 

and introduce a more challenging job in order to build 3D underwater models.  

Summarizing, there are several limitations when processing underwater images. (1) The scene 

illumination is usually non-uniform. Typically the underwater image is acquired with either 

ambient or artificial illumination. Both cases lead to time-varying illumination patterns. In the 
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former case it is due to water column and surface perturbations, and in the latter case - motion 

of the light source. (Note that this thesis considers imagery acquired by a single moving 

underwater camera, i.e., classical SfM case.) (2) Light attenuation is range-dependent. Because 

of those environmental factors, underwater images exhibit different properties compared with 

the images taken in air. Thus, matching of underwater images becomes difficult in the following 

aspects: a) underwater images have much fewer salient points, like corners (even man-made 

objects are often covered with sediments and vegetation), b) the light-attenuating medium 

(water) leads to a violation of the brightness constancy constraint, c) wavelength-dependent 

attenuation of light does not allow reliance on color constancy, and d) the presence of 

suspended particles introduces noise in optical measurements. 

 

1.2.2 Research Purpose  

Accurate 3D models of underwater environments will enable us to provide ocean scientists 

with a tool for making quantitative measurements of submerged structures in addition to 

sampling and physicochemical measurements [28]. Therefore the need for instrumentation and 

methodology that enables 3D reconstruction of underwater scenes is a high priority for the 

scientific community [36].  

In this thesis, the aim is to create a system that allows research institutes and organizations to 

do 3D reconstruction from a sequence of underwater optic images with overlap. The system 

requires image sequences that do not have too large viewpoint transformations. The image 

should have sufficient overlap in order to reconstruct the location and orientation for each 

image viewpoint. In addition, it is advantageous when good illumination conditions are 

provided, thus the images display large rich texture areas. A robust underwater vision system 

is capable of managing these challenges in majority of environments and should allow 

successful image-based reconstruction. 



7 

 

 

1.3 Related Work 

Until recently, cameras have been used in underwater environments for several different 

purposes, such as monitoring marine habitats, tracking fish populations, reconstructing 

archaeological sites, and inspecting industrial equipment [38]. The increasingly common 

practice of deploying cameras aboard underwater remotely-operated vehicles (ROVs) and 

observation platforms and the mature 3D reconstruction algorithms from computer science 

have motivated oceanologists to start paying attention to the research of image-based 

underwater 3D reconstruction. Even though many methods proposed in Computer Vision and 

Photogrammetry are highly effective in air, they perform poorly in underwater settings [40]. 

Many attempts have been made to reconstruct underwater objects or seafloors using optic 

image sequence [6, 7, 8]. A general framework and early techniques for 3D underwater 

mapping have been introduced in [29]. The method proposed in [30] was used to reconstruct 

submerged coral reefs in a scientific survey. However, these earlier methods usually resulted 

in a poor density reconstruction, which reduces the possibility of identification of the detailed 

structure. Camera trajectory optimization for the reconstruction for a large-scale seafloor 

mapping with a large number of images was introduced in [28]. However, it still ended with a 

sparse-textured mesh, which is not sufficient for detailed observation. In [34] Brandou used 

underwater cameras attached to a stereo rig to capture images. The camera trajectory was 

preplanned and programmed to traverse a small scene of interest that had to be reconstructed 

in 3D with known extrinsic parameters. The intrinsic parameters were determined by 

calibration in situ using a planar checkerboard imaged in an image pair. Dense reconstruction 

was finally performed on the rectified image pair using the graph-cut algorithm. Conditions in 

this work were different from our work where a single freely moving camera was used and 

hence external parameters are not known a priori. In addition, prior knowledge is required in 
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order to make and preprogram the camera trajectory for the camera rig. In a same way, [46] 

combines a 3 DOF inertial sensor and a calibrated stereo rig to estimate the pose of the cameras 

and create a final 3D dense map. Yau in [38] emphasized the performance of the camera 

calibration with water refraction taken into account, and proposed a new refraction calibration 

model and device in order to obtain high reconstruction accuracy. It exploits the dispersion of 

light and adapts existing reconstruction algorithms for using the proposed calibration method 

to obtain a complete process for underwater 3D reconstruction. The modification to the dense 

reconstruction algorithm Patch-based Multi-View Stereo (PMVS) is made to complete dense 

reconstruction [39]. It uses an eight-camera rig and a calibrated camera pose is required for 

each image. While offering accurate results, this method has notable limitations. First, the 

calibration device is rather bulky and can only be used in a controlled environment. Second, 

precise values of the refractive index are needed for each wavelength. [36] has obtained dense 

reconstruction for submerged structures, but this method only works in a specific environment 

where the stereo system was mounted on a controlled manipulator arm, so the camera rotation 

and translation were known. However, in large-scale underwater mapping applications where 

a freely moving camera is used, this restriction is prohibitive. Cavan in [41] presents a 3D 

reconstruction pipeline that is capable of generating photo-realistic 3D models from underwater 

video acquired by an uncalibrated camera. Although an autocalibration method is presented in 

his method to transform the projective reconstruction based on trifocal-tensor (3-view 

geometry) to metric reconstruction, this method is proved to work only on short videos. 

Overlap of stereo images for video sequences is guaranteed to be larger than that for still images 

taken by a freely moving single camera.  

 

1.4 Data Acquisition and Description 

The optic underwater image sequence for this work was acquired by divers from the Parks 
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Canada Agency in 2009 using an underwater digital camera. The image sequence is taken of 

airplane debris on the seafloor near Longue-Pointe-de-Mingan, a small fishing village on 

Quebec's north shore. The plane - a PBY Catalina -failed at its second take-off attempt and 

slipped beneath the water on Nov. 2, 1942. The whole dataset consists of 3 separate image 

sequences. The airplane was imaged by divers from the top, north and south side respectively 

with the top view including 47 images, north view 42 images and south view 88 images. The 

original image dimension is 4288 by 2848. The camera intrinsic parameters including focal 

length and distortion parameters were calibrated underwater in the lab conditions. Figure 4 

gives an image overview of a subset of the top side image sequence. In the experiments in this 

thesis, the original images are sub-sampled into a quarter of the original image size for the sake 

of efficiency. 

 
Figure 3. Site photos during the acquisition of the underwater image dataset. 
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Figure 4. Subset image sequence thumbnails from top side. 

 

1.5 Thesis Outline 

The outline of this thesis is as follows. Chapter II introduces the concepts and geometric 

relationships used in 3D reconstruction of computer vision, including single-view geometry 

and two-view epipolar geometry. Chapter III discusses image matching techniques and gives 

an overview of successful sparse image matching and stereo image matching approaches which 

have been accepted in computer vision. The proposed quasi-dense matching technique is 

described and discussed in Chapter IV. The workflow and methods for concatenating 

underwater image sequences and the final bundle adjustment optimization is described in 

Chapter V. Experimental results and discussion are presented in Chapter VI. Finally, 

conclusions are made and future work is summarized in chapter VII.   
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Chapter II - GEOMETRY IN COMPUTER VISION 

2.1 Single-View Geometry  

A camera in computer vision parlance is a mapping between the 3D world (object space) and 

a 2D image [13]. Even though there are some different camera models, this work considers 

only the traditional pinhole camera. In this section only the notations and principles of the 

central projection (pinhole) camera model are described. Figure 5 depicts the geometry of 

pinhole cameras. In Figure 5, C denotes the image center and p the image principal point. The 

distance from the image center C to the principal point is the camera focal length f. The plane 

Z = f is the image plane, and this image plane is perpendicular to the principal optic axis Cp.  

 
Figure 5. Pinhole camera geometry. C is the camera center and p is the principal point. 

 

The space point X =  (X, Y, Z)𝑇 is mapped to image point x = (x, y)𝑇. From the right part of 

Figure 5, it can be noted that x = fX/Z and y = fY/Z. In other words, the space point X =

 (X, Y, Z)𝑇 in 3D space is mapped to the point (fX/Z, fY/Z) on the image plane in 2D space. 

The projection of a pinhole camera is called the central projection. 

The homogeneous or augmented vector is often used in projective geometry. The vector is 

called a homogeneous vector or an augmented vector if the vector is augmented by one 

additional scale dimension. Then, if the point coordinates are represented by homogeneous 

vectors, the central projection can be written in terms of matrix multiplication as 
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 (

𝑋
𝑌
𝑍
1

) → (
𝑓𝑋
𝑓𝑌
𝑍

) = [
𝑓
0
0

0
𝑓
0

0
0
1

0
0
0

] (

𝑋
𝑌
𝑍
1

) (2.1) 

Now redefine the notation X for the world point represented by the homogeneous 4-vector 

(X, Y, Z, 1)𝑇, x for the image point represented by a homogeneous 3-vector, and P for the 3 ×

4 homogenous camera projection matrix. Then equation (2.1) can be written as 

 x = PX (2.2) 

The above expression assumes that the origin of the image plane coordinate system is at the 

principal point. In practice, the left bottom corner of the image is assumed to be the origin as it 

is shown in Figure 6.  

 

Figure 6. Image (x, y) and camera (𝑥𝑐𝑎𝑚, 𝑦𝑐𝑎𝑚) coordinate systems. 

 

If the left bottom image corner is set as the origin of the image coordinate system, the mapped 

point is actually (fX + Z𝑝𝑥, fY + Z𝑝𝑦, Z), where (𝑝𝑥, 𝑝𝑦) is the coordinate of the principal 

point. Then equation (2.1) should be written as 

 (

𝑋
𝑌
𝑍
1

) → (
𝑓𝑋 + 𝑍𝑝𝑥

𝑓𝑌 + 𝑍𝑝𝑦

𝑍

) = [
𝑓
0
0

0
𝑓
0

𝑝𝑥

𝑝𝑦

1

0
0
0

] (

𝑋
𝑌
𝑍
1

) (2.3) 

The concise form of equation (2.3) is 

𝑦𝑐𝑎𝑚 

𝑥𝑐𝑎𝑚 

𝑦0 

𝑥0 x 

y 
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 x = K[I |0]X (2.4) 

where 

 K = [
𝑓 0 𝑝𝑥

0 𝑓 𝑝𝑦

0 0 1

] (2.5) 

K is called the camera calibration matrix. It should be noted that the camera calibration matrix 

may have other forms as can be seen in the literature. A general form of the calibration matrix 

is 

 K = [

𝛼𝑥 𝑠 𝑥0

0 𝛼𝑦 𝑦0

0 0 1
] (2.6) 

The parameters 𝛼𝑥 and 𝛼𝑦 may be different for the reason that the digital pixel is not always 

square. The added parameter s is referred to as the skew parameter. Although this form of 

calibration has added generality for all pinhole cameras, in this work we will be only using the 

calibration matrix of form (2.5) since this form is simple but sufficient for the accuracy 

requirement and the camera is carefully calibrated in the laboratory conditions. 

In the above description, the origin of the world coordinate frame is chosen to be the camera 

center and the Z axis coincides with the optic axis. However, the world coordinate system 

does not have to be this ideal one. The origin could be set anywhere and the orientation could 

be in any direction. The actual coordinate frame and the camera coordinate frame are related 

via rotation and translation. See Figure 7 for illustration. Any 3D point can be transformed 

between these two coordinate frames – the camera coordinate frame and the world coordinate 

frame in terms of homogeneous vectors using 

 𝑋𝑐𝑎𝑚 = [𝑅 −𝑅𝐶̃
0 1

] (

𝑋
𝑌
𝑍
1

) = [𝑅 −𝑅𝐶̃
0 1

] 𝑋 (2.7) 

where R is the rotation matrix to rotate from the world coordinate system to the camera 

coordinate system, 𝐶̃ is the coordinate of the camera projection center in the world coordinate 
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system, 𝑋𝑐𝑎𝑚 is the coordinate with respective to the camera coordinate system with origin 

located at the camera center and X  is the point coordinate with respective to the world 

coordinate system. Combining with equation (2.4), the general central projection from an 

arbitrary world coordinate frame to the image projection can be written as 

 x = KR[I| − 𝐶̃]X (2.8) 

Then the projection matrix is 

 P = KR[I| − 𝐶̃] = 𝐾[𝑅|𝑡] (2.9) 

where t = −R𝐶̃  represents the translation vector from the world coordinate system to the 

camera coordinate system with the camera center at the origin with respect to the world 

coordinate frame. 

 
Figure 7. The Euclidean transformation between the world and camera coordinate frames. 

 

2.2 Camera Calibration and Image Correction 

In any robot vision system, in order to perform Euclidean reconstruction, the camera must be 

calibrated to correct for the inherent distortions and misalignments in the imaging system [40]. 
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In the above single-view geometry description, there is an assumption that the space point, 

image projection and camera optic center are collinear and the principal point is right at the 

center of image. However, for real cases, due to lenses imperfections, this assumption in 

general does not hold. The most important deviation of this imperfect camera projection is 

radial and tangential distortions [13]. Camera calibration consists of finding the parameters 

internal to the camera that affects the image forming process. In order to obtain Euclidean scene 

reconstruction, the knowledge of intrinsic camera calibration parameters is essential [35]. The 

parameters include the position of the principal point (𝑝𝑥, 𝑝𝑦), the focal length f, the scaling 

factors for row pixels and column pixels, the skew factor and the radial lens distortion 

parameters. As we can see from the projection geometry described in the previous section, 

these parameters define the correspondence between pixel coordinates and point coordinates 

in 3D space. The calibrated parameters determine the elements in the calibration matrix K. 

Most camera calibration algorithms use a calibration pattern to accurately locate points in space. 

These 3D point coordinates are matched with their corresponding image projections for 

calculation of camera parameters [49]. In this work, the camera used to take the dataset was 

calibrated underwater in a tank following the technique described in the Matlab Camera 

Calibration Toolkit [47]. The typical images taken in a tank before and after correction using 

calibration parameters are shown in Figure 8. Although the salinity and temperature of the 

water in the tank were different from that on the real site, lens distortion that remains after the 

correction appeared to be small enough not to hinder 3D scene reconstruction. However, if 

higher accuracy is required and the imaging conditions are good enough, it is recommended 

that the camera be calibrated in the original environment. 
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Figure 8. Typical image used for camera calibration before and after correction. 

 

2.3 Two-View Geometry 

2.3.1 The Fundamental Matrix 

The epipolar geometry is a key concept in computer vision. It defines the relationship between 

two cameras imaging the same scene. In this section, a brief description will be given on the 

basic notations and principles of epipolar geometry. Figure 9 illustrates the two-view epipolar 

geometry. The world point M is projected on two images giving m1 and m2. The baseline is 

defined as the line connecting the camera centers 𝐶1and 𝐶2. The plane containing the baseline 

and the world point is called the epipolar plane. The epipolar line is the intersection of the 

epipolar plane with the image plane. It is denoted by 𝑙1and 𝑙2 in Figure 9. The most important 

property of the epipolar line is that the correspondence of m1 must lie on its corresponding 

epipolar line 𝑙2. This is easy to see from Figure 9, to each point x in one image, there exists 

a corresponding epipolar line l’  in the other image. Any point x’  in the second image 

matching point x must lie on the epipolar line l’. If the epipolar geometry is known, the search 

for a correspondence could be limited to a search within the image line.  
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Figure 9. Epipolar geometry. 

 

In order to represent the epipolar geometry algebraically, a fundamental matrix is introduced. 

The fundamental matrix is a 3 by 3 matrix relating a point from one image to its corresponding 

epipolar line on another image.  

 F = [

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

] (2.10) 

More details about the algebraic derivation of the fundamental matrix can be found in [13]. 

The property of the fundamental matrix is that it relates the point in one image to the 

corresponding epipolar line in another image: 

 l′ = Fx (2.11) 

where F  is the fundamental matrix, x  is the point in the first image, and l’  is its 

corresponding epipolar line in the second image. To get the corresponding epipolar line l for 
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a given point x’ in the second image, the following equation is used: 

 l = 𝐹𝑇𝑥′ (2.12) 

where 𝐹𝑇 is the transpose of fundamental matrix F. And since x lies on l and x’ lies on l’, we 

have 

 
x′𝑇Fx = 0

𝑥𝑇𝐹𝑇x′ = 0
 (2.13) 

 

2.3.2 The Computation of the Fundamental Matrix 

The 8-point algorithm is the simplest method of computing the fundamental matrix. The input 

of this algorithm is a set of greater or equal than 8 point correspondences {𝑥𝑖 ↔ 𝑥𝑖′} and the 

output is the fundamental matrix. The 8-point algorithm of fundamental matrix is summarized 

as the following steps.  

i. Normalize the input point correspondence: transform the image coordinates according 

to 𝑥̂𝑖 = T𝑥𝑖  and 𝑥̂𝑖′ = T𝑥𝑖′ , where T  and T′  are normalizing transformations 

consisting of a translation and scaling. The suggested normalization is a translation and 

scaling of each image so that the centroid of the reference points is at the origin of the 

coordinates and the Root Mean Square (RMS) distance of the points from the origin is 

equal to √2; 

ii. Find the fundamental matrix 𝐹̂′ that corresponds to the normalized matches 𝑥̂𝑖 ↔ 𝑥̂𝑖′ 

by 

(a) Linear Solution: Find linear solution 𝐹̂ using matrix SVD decomposition; 

(b) Singularity enforcement: Replace 𝐹̂ by 𝐹̂′ such that det 𝐹̂′ = 0 using the SVD; 

iii. Denormalize the fundamental matrix solution 𝐹̂′ from step ii using F = 𝑇′𝑇𝐹̂′𝑇. 

Step ii(a) is the essence of this normalized 8-point algorithm and it can be performed using 

equation (2.13). Writing x = (𝑥, 𝑦, 1)𝑇  and x′ = (𝑥′, 𝑦′, 1)𝑇 , the equation (2.13) can be 

written linearly as 



19 

 

 x′x𝑓11 + 𝑥′𝑦𝑓12 + 𝑥′𝑓13 + 𝑦′𝑥𝑓21 + 𝑦′𝑦𝑓22 + 𝑦′𝑓23 + 𝑥𝑓31 + 𝑦𝑓32 + 𝑓33 = 0 (2.14) 

Equation (2.14) can be written as vector inner product if the fundamental matrix F is written 

as a 9-entry row-major vector. We denote this vector by f. 

 (x′x, x′y, x′, y′x, y′y, y′, x, y, 1)f = 0 (2.15) 

Given a set of n point correspondences, a set of linear equations can be obtained of the form. 

 Af = [
𝑥′1𝑥1

⋮
𝑥′1𝑥1

𝑥′1𝑦1

⋮
𝑥′1𝑦1

𝑥′1
⋮

𝑥′1

𝑦′1𝑥1

⋮
𝑦′1𝑥1

𝑦′1𝑦1

⋮
𝑦′1𝑦1

𝑦′1
⋮

𝑦′1

𝑥1

⋮
𝑥1

𝑦1 1

⋮ ⋮
𝑦1 𝑦1

] 𝑓 = 0 (2.16) 

Since this is a homogeneous set of equations, f can only be determined up to scale. f is the 

last column of V in the Singular Value Decomposition (SVD) decomposition of A = UD𝑉𝑇 

and in this way, the solution f is the vector that minimizes ||Af|| subject to the condition 

||f||  =  1 [13].  

After applying sparse feature extraction and matching, a set of potential image correspondences 

with false matches are given. Nowadays it has come to be a standard process in computer vision 

to compute the fundamental matrix given a set of potential image correspondences since the 

estimation of fundamental matrix is essential to many tasks in 3D computer vision [14]. A 

standard iterative automatic computation process utilizing the RANdom Sample Consensus 

(RANSAC) [17] algorithm has been mostly used given a set of point correspondences with a 

certain ratio of outliers [15, 16]. The following are the basic steps of the automatic computation 

process of the fundamental matrix. 

i. Randomly choose 8 point correspondences from the input set of point correspondences; 

ii. Compute the fundamental matrix out from the selected 8 point correspondences using 

the linear 8-point algorithm; 

iii. Evaluate other point correspondences; 

iv. Repeat steps i to iii until the best fundamental matrix with the maximum number of 

good correspondences (inliers) has been found; 
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v. Reevaluate all the point correspondences using the estimated fundamental matrix from 

previous steps and determine all the final good correspondences. This is called guided 

matching. 

 

2.3.3 Retrieving Projection Matrix from the Fundamental Matrix 

When the camera intrinsic parameters are known, the essential matrix E [62] can be obtained 

from the fundamental matrix using equation (2.17). 

 E = 𝐾′𝑇𝐹𝐾 (2.17) 

The essential matrix is the specialization of the fundamental matrix to the case of normalized 

image coordinates where the camera calibration parameters are known [13]. Comparing to the 

fundamental matrix, the essential matrix has fewer degrees of freedom - only 5. Both rotation 

and translation have 3 degrees of freedom, but there is a scale ambiguity which makes the total 

degrees of freedom to be 5. The most important property of the essential matrix is the capability 

of direct camera projection matrix extraction from the essential matrix. The camera projection 

matrices may be extracted from the essential matrix up to a scale and a four-fold ambiguity 

while there is a projective ambiguity for the fundamental matrix. Given the essential matrix, 

the projection matrix can be solved in the following steps. 

Set the first projection matrix to P =  K[I | 0] where K is the camera calibration matrix. 

Suppose that the SVD of E is Udiag(1,1,0)𝑉𝑇, the second camera projection matrix P’ is 

one of the following matrices 

𝐾[UW𝑉𝑇|+𝑢3] or K[UW𝑉𝑇|−𝑢3] or K[U𝑊𝑇𝑉𝑇|+𝑢3] or K[U𝑊𝑇𝑉𝑇|−𝑢3] 

𝑢3 is the last column of U and 

 W = [
0 −1 0
1 0 0
0 0 1

] (2.18) 

The four choices of the second camera projection matrix must be tested to determine the correct 

one with one point correspondence by triangulating the point match. There is only one matrix 
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among these four choices that makes the triangulated points be in front of both cameras. 
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Chapter III - IMAGE MATCHING 

3.1 Sparse Matching 

Sparse matching plays an important role in many computer vision and image processing tasks, 

such as image mosaic, image recognition, and the determination of the camera pose. Sparse 

matching aims at establishing correspondences between the same objects which appear in 

different images based only on the information the images provide. The matching primitives 

are usually point features, lines and regions, among which point features have been mostly and 

widely used and investigated. The state-of-the-art image matching algorithms usually consist 

of two main parts: the detector and the descriptor [18]. The detector searches point features 

such as corners and edges in the compared images and template images. The descriptor 

associates each point correspondence with some sort of description of point surroundings. The 

good descriptor should be invariant to environment changes such as image rotation, scale 

difference or the illumination condition. The correspondences are established by the 

comparison and matching between each descriptor pair.  

Since sparse matching is usually the first step, the performance of many applications rely on 

the existence of stable, representative features in the image, driving research and yielding a 

plethora of approaches to this problem. In other words, when a scene or an object must be 

reconstructed in 3D, detection and matching points in the image are the most crucial parts for 

the model accuracy. The 3D model would be of low quality or even completely wrong if the 

feature extraction and matching steps introduce errors [35]. It has been proved that some local 

features are robust to occlusion, background clutter and other content changes [19]. The ideal 

keypoint detector finds salient image regions that can be repeatedly detected despite change of 

view point; more generally it is robust to as many image transformations as possible. The ideal 



23 

 

descriptor should be able to capture the most distinctive and characteristic information enclosed 

in the feature regions and should also be invariant to all possible image transformations, thus 

the features can be matched under different imaging conditions [25]. In recent years, many 

image feature detectors have been proposed and they are able to reach a certain degree of 

invariance. Among popular feature detectors are Moravec [44] and Harris [20] point detectors, 

SIFT[26], SURF [21], KAZE [22], FAST [23, 24], BRIEF [27], BRISK [25], etc. The majority 

of feature detection algorithms work by computing a corner response function across the image. 

Pixels at which response exceeds a predefined threshold value (and are local maxima) are then 

retained [24].  

In this thesis, we chose the SIFT detector to be our primary sparse matching method. Lowe’s 

approach [26] is widely accepted as one of the highest quality options in sparse image matching 

[25] both in performance and computational cost and it has already been integrated into many 

commercial and public domain development packages such as OpenCV (http://opencv.org). 

The SIFT features have a high degree of invariance to image scale and rotation. They are also 

robust to changes in illumination, noise, occlusion and minor changes in viewpoint. The 

algorithm is performed in the following four stages: 

i. Extrema detection in scale space; 

ii. Refining keypoints location; 

iii. Keypoint orientation assignment; 

iv. Generation of keypoint descriptor. 

The SIFT detector achieves scale invariance by convolving the image with a Difference of 

Gaussian (DOG) kernel at multiple scales, retaining locations which have maxima both in scale 

and space. Let I(x, y) denote the input image. A scale-space of an image is defined as a 

function L(x, y, σ), where σ is the scale factor. A Gaussian scale-space for an input image I, 

is defined by 
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 L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.1) 

, where ∗ represents the convolution operation in both x- and y- direction and the Gaussian 

filter is defined as 

 G(x, y, σ) =
1

2𝜋𝜎2 exp (−
𝑥2+𝑦2

2𝜎2 ) (3.2) 

Laplacian of Gaussians as described in equation (3.1) has been proven to be extremely useful 

because it is stable computationally and gives important information about the scale of regions 

of an image. But it is computationally expensive, so in practice, Difference of Gaussian (DOG) 

 D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (3.3) 

is often used as an approximation to Laplacian of Gaussians and it is illustrated in Figure 10.  

 

Figure 10. The Difference of Gaussian (DOG) space of image. 

 

The key SIFT feature points are then located at the extreme of the DOG. To enhance the 

accuracy of localization, the zero crossing of the Taylor series expansion for the DOG is 
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estimated 

 D(x) = 𝐷0 +
𝜕𝐷𝑇

𝜕𝑥
𝑥 +

1

2
𝑥𝑇 𝜕2𝐷

𝜕𝑥2 𝑥 (3.4) 

The accurate key point location and scale is solved using the derivative of equation (3.4) when 

it is equal to zero.  

Each key point is then assigned one or more orientations based on the local image gradient 

directions which achieves invariance to rotation. For an image sample L(x, y) at scale σ, the 

gradient magnitude m(x, y), and orientation, θ(x, y), are calculated using pixel differences: 

 m(x, y) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2 (3.5) 

 θ(x, y) = 𝑡𝑎𝑛−1 (
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
) (3.6) 

The magnitude and orientation calculations for the gradient are done for every pixel in a 

neighboring region around the key point in the Gaussian-blurred image L. An orientation 

histogram with 36 bins is formed, with each bin covering 10 degrees. In the histogram, the 

orientations corresponding to the highest peak and local peaks that is within 80% of the highest 

peaks are assigned to the key point. Now each key point has a location, scale and orientation. 

Then a distinctive, scale and rotation invariant descriptor is generated for each key point by 

calculating gradient histograms around the key point. Typically, a SIFT descriptor is of length 

128 (8 orientation bins and 4 by 4 cells for voting) [1]. The Euclidean distance between the 

descriptor vectors is used as a similarity measurement between features. Figure 11 

demonstrates how the SIFT algorithm is invariant to image rotation and scale. 
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Figure 11. SIFT matching performed on two example images. 

 

We apply the robust method for the fundamental matrix estimation described in section II to 

remove match outliers and acquire the final sparse matching. The initial set of correspondences 

are obtained by evaluating the ratio between the first and the second closest descriptor for each 

feature point [26]. The ratio must be larger than a certain threshold. Figure 12 gives the sparse 

matches of an example stereo image pair from our dataset.  
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Figure 12. SIFT matches of two example images from our dataset. 

 

3.2 Stereo Matching 

3.2.1 Image Rectification 

Image rectification is the process of applying 2-dimensional projective transforms, or 

homographies, to a pair of images whose epipolar geometry is known so that epipolar lines in 

the original images map to horizontally aligned lines in the transformed images [48]. By 

rectifying the images, the corresponding epipolar lines coincide. Both computational 

complexity and the possibility of false matches are greatly reduced.  
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Figure 13. Linear planar rectification process. 

 

Rectification aligns the corresponding epipolar lines to be on the same image scan lines so that 

the dense correspondence search only happens on the same horizontal line in the other image. 

The rectification is carried out based on the epipolar geometry that has been computed in the 

sparse matching step. Typically the methods of image rectification could be grouped into linear 

planar rectification [48] and non-linear polar rectification [11]. 

The planar rectification is accomplished by applying a homography to each image that maps 

the epipole to a predetermined point (Figure 13). The predetermined epipole should be i =

[1 0 0]𝑇 (a point at infinite) thus all the epipolar lines are parallel with the horizontal axis. The 

fundamental matrix for this canonical case is 

 𝐹̅ = [𝑖]× [
0 0 0
0 0 −1
0 1 0

] (3.7) 

The image rectification is to find a transformation applied to images I and I′ such that the 

fundamental matrix for these two images have the form of Equation (3.7). Let H and H′ 
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denote the homographies to be applied to images I and I′ respectively, and consider a pair of 

rectified image point 𝑚̅ and 𝑚̅′, we have 

 𝑚̅ = Hm and 𝑚̅′ = 𝐻′𝑚′ (3.8) 

where m and m′ denote the original image points. Then we have 

 𝑚̅′𝐹̅𝑚̅ = 0 (3.9) 

 𝑚′𝑇
𝐻′𝐹̅𝐻𝑚 = 0 (3.10) 

Thus the fundamental matrix for the stereo image pair can be denoted as 

 F = H′𝑇[𝑖]×𝐻 (3.11) 

The homographies H and H′ that satisfy Equation (3.11) are not unique. Charles Loop and 

Zhengyou Zhang [68] gave a solution for finding a pair of homographies that minimize image 

distortion. Their proposed method can be summarized into the following steps. 

1. Find initial correspondence; 

2. Compute the fundamental matrix; 

3. Compute a projective transformation H′ that maps the epipole e′ to infinity (1,0,0)𝑇; 

4. Find the matching projective transformation H that minimizes; 

∑ 𝑑(𝐻𝑥𝑖 , 𝐻′𝑥𝑖′)2

𝑖

 

5. Warp the first image according to H and the second image according to H′. 

The advantage of such an approach is that only one transformation matrix needs to be found 

for each view, thus resulting in high speed and simplicity of algorithms. Another advantage is 

that rectified images still comply with the perspective camera model. However, a significant 

drawback of the linear algorithm is that they fail to perform when one or both epipoles are 

inside the images. Nevertheless, a non-linear algorithm is proposed to perform under this 

configuration. 

The non-linear polar rectification is line-based and uses polar transformation in order to make 
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corresponding epipolar lines become the same as the image scan lines. This method represents 

each pair of epipolar lines using the polar equations under the polar coordinate system and then 

transforms the epipolar lines to the horizontal or vertical image scan lines (Figure 14).  

 

Figure 14 Non-linear polar rectification process. 

 

Hence, the method can handle the case where epipoles are located inside the image which often 

happens in image acquisition by moving robots as the camera is moving toward or further away 

from the structure target.  

 
Figure 15. The polar rectification on an example image pair where the epipoles are within the 

image area. 

 

The polar image rectification method is efficient for underwater environment since the epipole 

is often inside the image which is caused by moving camera along the viewing direction. Figure 

16 presents a pair of underwater rectified images using the polar rectification method. Figure 

17 presents the rectified image for the same example image pair using linear planar rectification. 
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Figure 16. Image Polar rectification on an example stereo image pair from our image dataset. 

The images are warped so that epipolar lines are oriented on the same horizontal line. 

 

Figure 17. Linear Planar Rectification on an example stereo image pair from our image 

dataset. The homography transformation is applied for each image. 
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3.2.2 Stereo Matching Overview 

Dense matching aims to search dense correspondences between stereo images for as many 

pixels as possible. The dense matching is usually carried out after sparse reconstruction, 

assuming the camera is calibrated and the poses of cameras are known. Dense matching can be 

classified into two categories: local and global methods, according to the principle they are 

based on. Local methods compare correspondences one point at a time, not considering 

neighboring points/measures, while global methods typically seek a disparity assignment that 

minimizes a global cost function which includes a data term and a smoothness term. 

 E(D) = 𝐸𝑑𝑎𝑡𝑎(𝐷) + 𝐸𝑠𝑚𝑜𝑜𝑛𝑡ℎ𝑛𝑒𝑠𝑠(𝐷) (3.12) 

The data term is the sum of the matching costs of all pixels for a disparity assignment D. The 

smoothness term is a numeric representation for a disparity assignment D which is typically 

calculated by adding penalties for each pixel based on the smoothness of its neighboring 

disparities. 

The improvement of accurate stereo matching techniques, as well as the efficiency and 

computational cost, is one of the most important and investigated topics in computer vision and 

photogrammetry. Especially over the last few years, a large number of new matching 

algorithms have been developed. However, two methods – Patch Based Multi-View Stereo 

(PMVS) [39] and Semi-global Matching based on mutual information [5, 50] - must be 

mentioned separately in particular due to the high accuracy, robustness and computational 

efficiency. These two methods have been widely accepted and applied in stereo vision systems. 

Their successful results have encouraged the algorithms implementation by many researchers.  

Semi-global matching realizes a pixel-wise matching and relies on the application of a 

consistency constraint during the cost aggregation. Combining many 1D constraints realized 

along several paths, symmetrically from all directions through the image, the method performs 

the approximation of a global 2D smoothness constraint which allows for detection of 
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occlusions, fine structure and depth discontinuities. It has been implemented in many public 

domain and commercial software packages, such as OpenCV, SURE and its library interface 

libTSgm [52] which is developed by the Institute for Photogrammetry of Stuttgart University. 

The experiments have shown competitive results in point cloud generation from multi-view 

images even compared with laser scanned data. Figure 18 is the point cloud generated using 

the semi-global matching method on aerial images.  

 
Figure 18. 3D point cloud derived from aerial images using SURE. 

 

The other top-performing method that has to be mentioned is Patch Based Multi-View Stereo 

(PMVS) developed by Furukawa. The scene representation in PMVS consists of a set of small 

rectangular patches. Each patch is parameterized by its center c and normal direction n, 

approximating a local tangent plane of the true surface. Each patch is associated with a 

photometric discrepancy score which measures the difference in its appearance between two 

images. This is done by the patch projection back into images and only patches with low 

discrepancy score are chosen to represent the surface. This is followed by patch expansion and 

filtering for a fixed number of iterations. The expansion step creates a new patch next to 

existing ones and the parameters of the new patch are adjusted to minimize the photometric 

discrepancy which is similar with the patch initialization step. The filtering step eliminates 
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incorrect matches either in front or behind the observed surface using visibility constraints. The 

PMVS have been demonstrated to perform efficiently and produce accurate results on many 

different datasets. Some example results are shown in Figure 20. A Graphical User Interface 

(GUI) application for 3D reconstruction using SfM called VisualSFM has integrated PMVS as 

its dense reconstruction algorithm. The program is easy to use and runs in the following three 

steps: image matching, sparse reconstruction and dense reconstruction using the PMVS 

algorithm. Sample results on close range images are shown in Figure 20. 

 
Figure 19. The overall approach of CMVS. From left to right: a sample input image; detected 

features; reconstructed patches after the initial matching; final patches after expansion and 

filtering; polygonal surface extracted from reconstructed patches. 

 

 

 
Figure 20. Sample results of PMVS2. 

 

In this work, we have experimented with our underwater image dataset using these two state-

of-the-art methods which have achieved great success and have been widely accepted in the 

computer vision community. Unfortunately, neither of them was able to produce stable or 
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comprehensive reconstruction result on our experimental underwater images. The reason in 

general is that the different methods used on the surface are not robust to changes caused by 

the underwater medium and hence the results are unstable [35]. In the last experimental section 

of this thesis, the results using these two methods will be compared with our proposed quasi-

dense matching method. 
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Chapter IV - QUASI-DENSE MATCHING 

Most difficulties for accurate dense stereo matching are caused by occlusions, object 

boundaries, and fine structures which can appear blurred. The specific properties of the medium 

make the dense matching even more difficult, thus the previous works [29-31] usually result in 

sparse and low resolution models because only few distinct features can be robustly matched 

with the idea that these features are more robust to artifacts from the medium effects [28]. The 

sparse approach is sufficient for computing or tracking camera positions, but is not adequate 

for full representation of the scene or objects as it merely reconstructs sparsely distributed 3D 

points. When an application demands the detailed structure, dense matching is especially 

important. Hence, a modified quasi-dense matching method is required and is proposed in this 

work to produce a satisfactory reconstruction. 

 

4.1 Review of Quasi-Dense Matching 

Quasi-dense matching was first proposed by Lhuillier and Quan [56, 57] and developed further 

to be applicable to wide baseline images [58] and multiple views [60]. This method is 

considered to be the “golden mean” between sparse and dense approaches [61] and it was 

motivated by the deficiencies of the existing sparse approaches. The method is based on the 

propagation of point correspondences into their neighborhoods and is able to deliver a set of 

high density 3D points from calibrated images. This propagation strategy could also be justified 

as the seed matches are the points of interest which are the local maxima of the texture richness 

so the matches could be extended to its neighbors which still have rich texture though are not 

local maxima.  

The method first sorts the sparse reliable point correspondences from sparse matching by their 

correlation scores. These sorted point correspondences are called the seed points. All initial 
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seed matching are starting points of concurrent propagations. At each step of propagation, the 

best corresponding pixels are chosen from the seed points and removed from the current set of 

seed matches. Then, in the immediate spatial neighborhood of this chosen point, potential 

matches are searched and the best ones are added to the current list of seed points and to the 

set of accepted matches according to a combined consideration of local constraints such as 

correlation, gradient disparity and confidence (Figure 21).  

 
Figure 21. Definition of neighborhood N(a, A) of pixel match (a, A). It is a set of matches 

included in the two 5×5-neighhborhood 𝑁5(𝑎) and 𝑁5(𝐴). Possible matches for b (resp. C) 

are in the 3×3 black frame centered at B (resp. c). The complete definition of N(a, A) is 

{(b, B), b ∈ 𝑁5(𝑎), 𝐵 ∈ 𝑁5(𝐴), (𝐵 − 𝐴) − (𝑏 − 𝑎) ∈ {−1,0,1}2}. 

 

Only new matches that have not been matched yet are chosen to be the final matches to 

guarantee matching uniqueness. The whole process ends when no more seed points can be used 

to propagate for finding new matches. The propagation algorithm can be described as follows. 

Let s(x) = max {|I(x + ∆) − I(x)|, ∆∈ {(1,0), (−1,0), (0,1), (0, −1)}}  be the estimate of 

luminance roughness for the pixel at x, which is used to stop propagation into insufficiently 

textured areas with s(a) < t where t = 0.01 and I(a) is scaled to be from 0 to 1. The input 

of the algorithm is the set “Seed” of the current seed matches and the output is an injective 

displacement mapping “Map”.  
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Figure 22. Pseudo code of quasi-dense matching algorithm. 

 

The quasi-dense matching method is a very efficient algorithm both in time and space. The 

most significant property of this method is the robustness which is necessary in underwater 

imagery matching due to the low image quality. At each step, only the most reliable point from 

the seeds are chosen to propagate for new matches and this drastically limits the possibility of 

bad matches. In other words, the risk of bad propagation is considerably diminished by the 

best-first strategy. Since the propagation approach produces denser but not completely dense 

pixel correspondences, it is called quasi-dense matching. This quasi-dense matching algorithm 

can be applied not only to surface reconstruction, it is also useful for fundamental matrix 

estimation [62]. The latter application is implemented by locally fitting planar patches encoded 

by homographies in order to obtain more accurate correspondences with sub-pixel accuracy. In 

this case, the epipolar geometry is not added as a constraint in correspondence propagation [62]. 

Figure 23 illustrates the good performance of the quasi-dense matching algorithm on the 

“flower garden” dataset to generate a depth map. It should be noticed that the pair of “flower 
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garden” images are very difficult to match by classical correlation or dynamic programming as 

the disparity is large and the ordering constraint along the eipolar lines is violated. Even a small 

number of initial seed matches with a large portion of false matches could provoke and 

avalanche of correct matches in the whole image areas.  

 
Figure 23. The disparity maps produced by propagation with different seed points and 

without the epipolar constraint. (a) Automatic seed points with the match outliers marked 

with a square instead of a cross. (b) Four seed points manually selected. (c) Four seed points 

manually selected plus 158 match outliers with a strong correlation score.  

 

4.2 Quasi-Dense Matching based on Affine Transformation 

Usually underwater images have large pair-wise baselines because of the difficult  imaging 

conditions. In addition, due to the low image quality, not too many feature correspondences 

can be established in the sparse matching step. Hence present research is motivated by the 

properties and the success achieved on difficult image datasets of this traditional quasi-dense 

matching algorithm. However, since the brightness and color constancy does not hold for 

underwater imagery, the traditional intensity-based matching methods that compare the gray-

scales of pixels from two small image windows (patches) cannot be used for underwater image 

matching as it usually can for the matching of in-air images. Straightforward application of this 

method leads to a high probability of identifying a wrong match as a correct one (false positive). 

Even with the epipolar constraint added at the propagation step, there are still a certain number 
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of incorrect matches in the set of final accepted matches. The reason for incorrect matches for 

underwater images is that the correlation score obtained from the intensity-based matching 

cannot be accepted as confidently as that for air imaging. However, the correlation 

measurement can still be an important indicator for similarity estimation between patches as 

long as the intensity-based matching method can be combined with other measurements to 

identify the correct image correspondences. Adaptive Least Square Matching (ALSM) 

incorporates adaptive geometric properties between the patches that are matched. This method 

utilizes an iterative optimization of the local geometric warping parameters between image 

patches such that the sum of absolute gray-scale differences [59] between corresponding pixels 

is minimized. In this paper, both the warping parameters and gray-scale similarity measurement 

contribute to the final decision about the goodness of the match. The “match-and-expand” 

procedure is used to implement the dense pixel-wise matching [56]. Our inspiration comes 

from [53], where the local geometric transformation is incorporated in a procedure for 

matching images with a wide baseline. Starting with a sparse set of feature matches (seed 

matches), the search for pixel-wise relationships is then iteratively expanded into the 

neighborhoods of seeds. In the process of searching for new matches, the ALSM technique is 

used instead of the traditionally used normalized cross-correlation. With ALSM, the correlation 

measurement is more meaningful. Simultaneously the optimal warping parameters are obtained 

and then compared with the parameters of the neighboring seed. For viewpoint changes, the 

most convenient transformation is the affine one [45]. Therefore, we choose affine 

transformation as the model used in adaptive lease square matching.  

 

4.2.1 Adaptive Least Square Matching 

The ALSM (Gruen, 1985) technique has been widely used in photogrammetry and computer 

vision since it was proposed in 1985. The process of the ideal pinhole camera imaging is in 

principle the projection from a Euclidean 3-dimensional coordinate system to a 2-dimensional 
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plane. Due to the change of viewpoints and properties of the medium, the patches from different 

images that correspond to the same object in a 3D scene differ both in shape and color (gray-

scale levels of the contributing pixels). Traditionally, ALSM assumes that there is a geometric 

affine transformation and a radiometric linear gray-scale transformation between 

corresponding image pixels within the patches.  

We denote the small corresponding image patches as discrete two-dimensional functions 

𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) respectively where 𝑓(𝑥, 𝑦) is the function that describes the patch in the 

reference image and 𝑔(𝑥, 𝑦) describes the patch in the target image. If the image location is 

represented by homogeneous vectors, the pixel mapping can be written in matrix form. 

 [
𝑥2

𝑦2

1
] = [

𝑎0 𝑎1 𝑎2

𝑏0 𝑏1 𝑏2

0 0 1
] [

𝑥1

𝑦1

1
] (4.1) 

where a0, a1, a2 and b0, b1, b2  are the affine geometric parameters. (x2, y2) is the image 

coordinate in the patch of target image g(x, y) and (x1, y1) is the image coordinate in the 

patch of the reference image f(x, y). 

The relationship of the gray-scales between corresponding pixels is assumed to be linear,  

 𝑔(𝑥2, 𝑦2) = ℎ0 + ℎ1𝑓(𝑥1, 𝑦1) (4.2)                                                                   

where ℎ0 and ℎ1 are constant offset and gain. To summarize, each pixel in the patch of the 

target image is related to the pixel in the patch of the reference image through an affine 

transformation. Also, the corresponding pixels are linearly related by their gray-scales. 

Linearizing (4.1) and (4.2) gives: 

 𝑣 = 𝑐1𝑑ℎ0 + 𝑐2𝑑ℎ1 + 𝑐3𝑑𝑎0 + 𝑐4𝑑𝑎1 + 𝑐5𝑑𝑎2 + 𝑐6𝑑𝑏1 + 𝑐7𝑑𝑏2 + 𝑐8𝑑𝑏3 − ∆ (4.3) 

where 𝑐1,…, 𝑐8 are the partial derivatives of 𝑔(𝑥2, 𝑦2) with respect to the geometric affine 

and radiometric linear gray-scale parameters; 𝑑ℎ0, 𝑑ℎ1, …, 𝑑𝑏3 are the corrections of the 

parameters and ∆ is the constant brightness difference. 

Each pixel pair in the corresponding patches gives a linear equation in the form of equation 
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(4.3) and from all the pixel pairs between the image patches we obtain a set of linear equations 

which can be written in matrix form: 

 𝑉 = 𝐴𝑋 − 𝐿 (4.4) 

Equation (4.4) is the observation equation where A  is the design matrix and X  is the 

correction vector of observables (geometric and radiometric parameters): 

 𝑋 = (𝑑ℎ0  𝑑ℎ1  𝑑𝑎1  𝑑𝑎2  𝑑𝑎3  𝑑𝑏0  𝑑𝑏1  𝑑𝑏2)𝑇 (4.5) 

The brightness difference between the corresponding pixels in the matching patches is 

minimized by the iterative solution of the observation equation (4.4) and the updating of the 

correction vector X  until the correction of each element in X  becomes smaller than a 

predefined threshold value.  

With a rough estimate of the locations of the corresponding image patches, the optimal affine 

and brightness transformation parameters can be obtained using ALSM. The center of the 

image patch is considered to be the final refined correspondence location. ALSM is applied to 

every eligible putative match around the seed match. The best ones (i.e., with the highest 

similarity score) are chosen as the final matches and added to the seed list for further 

propagation. However, if the initial guess of the patch location is far from the true location, the 

ALSM will not converge to a final solution within a certain number of iterations. In this case 

the putative match is rejected.  

 

4.2.2 Quasi-Dense Matching using ALSM 

After the first stage of obtaining an initial sparse set of seed matches, these seed matches are 

used to produce a quasi-dense correspondences between the two images.  

In order to adjust the traditional quasi-dense matching for underwater imagery, our proposed 

approach incorporates the ALSM in the propagation process to minimize the number of 

mismatches. The modification is described below. 

The first extension to the match propagation algorithm is applied at the first stage of the initial 
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matching. The initial set of feature matches is matched using ALSM in order to obtain the 

affine parameters for the transformation between the initial seed patches (image regions around 

x and x’). The affine parameters are adhered to the seed matches and are used later in the 

propagation step.  

The original quasi-dense algorithm does not include the normalization of the local image 

patches and the search for new matches is performed in the non-altered neighborhood of x’. 

This prevents the original quasi-dense algorithm from the application on wide-baseline images 

because in such images viewpoints differ substantially and hence the deformation between two 

corresponding patches can be significant. In underwater imagery, viewpoints are almost always 

far from each other because it is difficult to control viewpoints due to currents and platform 

instability. Here the search for the putative matches is proposed not in the original 

neighborhood, but in the image patch warped by the affine transformation with the parameters 

found for the seed match (x, x’).  

Each putative match (u, u’) from the local normalized image patch is first checked for the 

epipolar constraint and the 2D disparity limit as it is normally done in the original propagation 

algorithm. The location of the match that satisfies the above constraints is used as an initial 

estimate for a putative match to ALSM. The refined location for this putative match (ur, ur′) 

is returned from ALSM together with its geometric affine and radiometric gray-scale linear 

parameters. Actually, u  is equivalent to ur  since the center of the image patch in the 

reference image does not change during the ALSM computation. ur′, the correspondence of 

ur in the target image, is obtained by iterating equation (4.4). Now the uniqueness of (ur, ur′) 

should be checked to guarantee that the match has not been covered on the previous 

propagation steps. If the match (ur, ur′) already exists in the final dense match list, it is 

rejected. The affine parameters of (ur, ur′) are compared with those of the seed match (x, x’). 

The match (ur, ur′) is accepted and added to the list of local candidates only if the differences 
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between the parameters are sufficiently small. The underlying assumption for this comparison 

of affine parameters is that the local observed surface is smooth, and hence the local geometric 

warping parameters for the two neighboring matches vary continuously. Likewise, the 

proposed algorithm proceeds until no seed match can be taken out from the seed list for 

propagation. Figure 24 illustrates the workflow of the proposed algorithm. Compared with the 

seeds in the original proposed algorithm, the seed matches in our approach have the geometric 

affine transformation parameters as an extra property which is used for normalization of local 

image patches and the surface smoothness check. 

            

 
Figure 24. The workflow of the proposed algorithm. 
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Chapter V - 3D RECONSTRUCTION OF CAMERAS AND 

STRUCTURE 

5.1 Image Preprocessing 

The main reason that reconstructing the 3D surface from underwater imagery has always been 

challenging work is that the image quality is degraded due to light propagation through water. 

As mentioned before, various reasons can be found for the degradation, e.g non-uniform 

illumination of the imaged objects, light scattering and attenuation effects, or suspended 

particles present underwater result in image contamination. A major difficulty in the processing 

of underwater imagery comes from light attenuation which limits the visibility distance to 

approximately twenty meters in clear water and about five meters or less in turbid water. Thus 

use of artificial illumination is necessary for acquisition of underwater images. Unfortunately, 

artificial lights tend to illuminate non-uniformly producing a bright spot in the center of the 

image and poorly illuminated surroundings. However, the degraded underwater image can be 

preprocessed before the reconstruction process in order to counteract this effect to a certain 

degree [32]. Different methods have been proposed in order to enhance the underwater image 

quality. Usually methods consists of several successive steps which respectively correct non-

uniform illumination, suppress noise, enhance contrast and adjust colors [33]. For 3D 

reconstruction purpose, the major drawback is that the degraded image quality limits the 

inadequacy of the feature points that can be extracted, which makes it difficult to determine 

image orientation and sequence connection. Even though the presented research is not intended 

to perform deep investigation of image processing techniques, simple image enhancement can 

dramatically increase the number of features and this could be crucial for 3D reconstruction 

work based on underwater images. Finding more feature correspondences results in the 
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enhancement of both the accuracy and the robustness of the recovery of the camera geometry. 

Figure 25 shows an original underwater image and the image after normalization enhancement.  

 

Figure 25. Image enhancement by normalization. Left: original image. Right: image after 

normalization. 

 

We performed a test on a subset of the image dataset including 5 sequential images to obtain 

the statistics on the number of features extracted and matched before and after simple image 

enhancement. The result is shown in Figure 26. It can be seen that the number of features 

extracted and successfully matches increases dramatically after image normalization. While 

the image enhancement is not that important for images taken in air, it is quite meaningful for 

underwater images since few feature points can be successfully matched on the original images. 

It is highly recommended for researchers and engineers working on 3D reconstruction from 

underwater images to preprocess images in order to acquire better performance.  
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 Before Image Normalization After Image Normalization 

 Number of 

features 

(left image) 

Feature 

numbers(right 

image) 

Number 

of 

Matches 

Feature 

numbers 

(left image) 

Feature 

numbers 

(right 

image ) 

Number 

of 

matches 

Pair 

1 

2306 3134 136 7196 8891 225 

Pair 

2 

3134 3198 195 8891 9461 331 

Pair 

3 

3198 3880 171 9461 10454 311 

Pair 

4 

3880 3682 72 10454 10323 107 

Figure 26. The number of features and sparse matches on 4 sequential image pairs before and 

after image normalization. 

 

5.2 Adding View from Image Sequence 

Previous sections have introduced the geometry of two views. As is shown above, the 

fundamental matrix which represents the two-view geometry algebraically can be estimated by 

providing a set of sparse matches from two views up to a scale factor. The reconstruction of 

each pair of two views has their own scale. Since this work aims at reconstructing 3D models 

from an image sequence, the scale for all of the image projection matrices should be consistent 

with each other. The consistent scale for all pairs of images can be achieved by only one 

common point that can be seen in all of the three images. Let the common point be denoted as 

X = (X, Y, Z, 1)𝑇. Since the first image pair is chosen to be the reference, X can be obtained 

by triangulating the correspondence from the first image pair. The scale of the second image 

pair is adjusted to make X be exactly projected to 𝑝3 in the third image. We will denote the 

scale ratio as s and s is only reflected on the length of the baseline as it is shown in Figure 27. 

According to the projection equation, 

 K[R′|st′]X = 𝑝3 (5.1) 

The undetermined ratio s is the only unknown and can be solved for directly. The ratio s is 

multiplied with the old translation vector t’  of the second image pair to form the new 
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translation vector. After this scale adjustment, the third image is added and hence all the images 

are reconstructed in the same world coordinate system. If there are multiple common points 

that can be seen by all the three images, s has multiple solutions and can be averaged in order 

to increase the solution accuracy. The solution can be used as an initial value in sparse bundle 

adjustment. 

 

Figure 27. Add new image in the previous constructed image sequence. 

 

5.3 Sparse Bundle Adjustment 

In the previous sections of this thesis, the two view geometry and matching have been 

introduced. In section 5.2, it has been stated that by using a common world point that can be 

seen in three images, the new image from the sequence can be added into the same world 

coordinate system of the first two images. By adding one next image each time from the 

sequence, the whole image sequence can be oriented and reconstructed in the same coordinate 

frame. However, due to image noise and measurement error, the system error is accumulated 

and is not distributed normally in each image. Bundle adjustment aims at obtaining a 

R, 𝑡 R′, 𝑡′ 

𝐶2 𝐶3 

𝑝3 

X 

𝐶1 

𝑝2 
𝑝1 



49 

 

reconstruction which is optimal under certain assumptions regarding the noise pertaining to the 

observed image features. This is achieved by iteratively refining projection matrices and 3D 

points in order to minimize reprojection error. Bundle Adjustment (BA) is almost invariably 

used as the last step of every feature-based 3D reconstruction algorithm. Let us denote the set 

of 3D points by 𝑋𝑗 and the set of project matrices by 𝑃𝑖. 𝑥𝑗
𝑖 is the coordinate of the j-th point 

as seen by the i-th camera. Due to the image noise, system and measurement error, the 

projection equation 𝑥𝑗
𝑖 = 𝑃𝑖𝑋𝑗  will not be satisfied exactly. The sparse bundle adjustment 

strives to estimate projection matrices 𝑃̂𝑖  and 3D points 𝑋̂𝑗  which exactly project image 

points 𝑥̂𝑗
𝑖  as 𝑥̂𝑗

𝑖 = 𝑃̂𝑖𝑋̂𝑗 , and simultaneously minimize the image distance between the 

reprojected point and the measured image points 𝑥𝑗
𝑖 for every view in which the 3D point 

appears i.e. 

 min
𝑃̂𝑖,𝑋̂𝑗

∑ 𝑑(𝑃̂𝑖𝑋̂𝑗, 𝑥𝑗
𝑖)2

𝑖𝑗  (5.2) 

Where d(x, y) is the geometric distance between the homogeneous points x and y [13]. The 

popular sparse bundle adjustment package (SBA) [51] is used in our work. The reprojection 

error between the observed and predicted image points is to be minimized during BA. The 

minimization is achieved using a nonlinear least-squares algorithm. Levenberg-Marquartdt has 

been proven to be effective in nonlinear least-squares problems and this method is used in this 

sparse bundle adjustment package. In this work, bundle adjustment is performed each time a 

new image from the sequence is added. The reason for choosing the incremental bundle 

adjustment strategy is to guarantee that the bundle adjustment is able to converge in a small 

number of iterations. If the bundle adjustment is only carried out after all the images have been 

added, the error is accumulated for the images added later causing the initial value to be quite 

far away from the true value. In this case, the bundle adjustment is not guaranteed to converge.  
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Figure 28. Incremental sparse bundle adjustment workflow. 
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Chapter VI - EXPERIMENT 

The approach described above was tested on our underwater image dataset. The dimensions of 

the images are 712 pixels in width and 1072 pixels in height which are actually 4-times 

subsamples of the original images. Two different image pairs from the dataset were selected 

for the experiment. The first image pair covers a smooth surface of a sunk airplane and does 

not have dark (poorly textured) areas. The surface covered by the second image pair has depth 

discontinuities and large dark areas. The SIFT detector was used for the initial feature matching 

step and produced 304 feature matches and 155 feature matches respectively (Figure 29).  

 

      

Figure 29. SIFT-detected matches for two underwater stereo image pairs. 

 

The epipolar geometry of these image pairs has been recovered as described above. The quasi-

dense matches obtained by the proposed approach of this thesis were triangulated to build point 

clouds and then surfaces were reconstructed from point clouds to test the performance of the 

approach. The generated point clouds from these two image pairs were also compared with the 

point clouds generated by CMVS andSGM. The results are shown in Figure 30. 
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Figure 30. Comparison of the point clouds generated by three different approach. Top: the 

first experimental image pair; Bottom: the second experimental image pair. From left to right: 

point cloud generated by CMVS; point cloud generated by Semi-global Matching based on 

Mutual Information; point cloud generated by the proposed method of this thesis. 

 

From the comparison illustrated by Figure 30, it can be seen that the performance of CMVS on 

dense matching of underwater images is the worst for underwater images. The density of points 

generated by CMVS is the sparsest and parts of the images are not matched at all. The second 

approach, semi-global matching, is efficient and gives a very satisfactory result with the largest 

point cloud density. However, due to the special property of underwater images – absence of 

color and grayscale, it is unavoidable that some outliers exist in the final result because this 

method uses multi-directional dynamic programming which is only based on the measurement 

of grayscales. These outliers generated by semi-global matching are red circled in Figure 30. 

The stereo matching method proposed in this thesis proved to be most suitable for underwater 

images since it combines both the measurement of image patch geometry and correlation to 

determine the best pixel correspondence. Although a pixel-to-pixel match is not satisfied most 

of the time, the density of the generated point cloud is still sufficient to reconstruct the 3D 

models with detailed surface structure. 391,016 quasi-dense matches were obtained from the 
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first pair of images and 284,338 from the second pair. The ratio of successfully matched pixels 

to all pixels is 0.51 and 0.37 respectively. For the second image pair, the pixel matching ratio 

is lower because of the existence of low contrast areas and significant depth discontinuities. 

(Note that the ratio of 1 cannot be achieved in principle because the images overlap only 

partially.) The number of points that have been generated by these three different methods are 

given in Figure 31. Even compared with the fully pixel-to-pixel dense matching algorithm, 

semi-global matching, our proposed method still gives a reasonably dense result.  

 

 Number of points for pair 1 Number of points for pair 2 

CMVS 13093 7356 

SGM 483965 347676 

QD_ALSM 391016 284338 

Figure 31. The number of points that are matched and triangulated by three different 

methods. 

 

The point clouds from this proposed method are reconstructed into surface meshes and the 

image texture is draped on these two meshes based on the camera’s orientation parameters. The 

textured meshes are shown in Figure 32. 

.  
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Figure 32. Reconstructed surfaces from the point clouds with image texture draped over the 

3D surface. (The surface is constructed using the Poisson surface reconstruction algorithm 

[43] provided by MeshLab [37].) 

 

From the constructed point clouds and textured surfaces of these two underwater image pairs, 

it follows that our proposed algorithm is robust enough to provide a sufficient number of image 

correspondences for the representative reconstruction of the 3D scene. Figure 33 and Figure 34 

are the complete reconstruction results from the whole image sequence of our dataset with two 

different perspectives.    
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Figure 33. Full point cloud from all the images of top view sequence after bundle adjustment (Perspective 1). 
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Figure 34. Full point cloud from all the images of top view sequence after bundle adjustment (Perspective 2). 
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Chapter VII - CONCLUSION AND FUTURE WORK 

In this thesis, a quasi-dense matching algorithm, which is sufficiently robust for the application 

to underwater imagery, has been reported. The proposed algorithm works differently from 

existing methods in several ways to be better adapted to the underwater environment. The 

ALSM technique is incorporated in the process of the match propagation. In addition, the local 

geometric warping parameters for each putative match are also compared with those of the 

neighboring seed match to choose the best dense matches. The seed match is augmented by an 

array of affine transformation parameters which is returned from the ALSM and the match 

expansion procedure is carried out in the normalized (warped) neighborhood of the seed.  

The experiments on our underwater image dataset demonstrated that this algorithm is robust to 

the change of environment factors (in comparison with air) and is able to provide a sufficient 

number of successful correspondences between the overlapping images. Even compared with 

state-of-art dense matching approaches from computer vision, such as CMVS and semi-global 

matching, this method produces a competitive result. Even with the camera calibrated in a tank 

rather than on site, the reconstruction result looks satisfactory. The algorithm described in this 

thesis can be useful in a wide range of applications such as underwater image modeling and 

rendering. The contribution of our work is the adaptions of existing 3D reconstruction methods 

to accommodate for specifics of underwater environment. 

Since the initial propagation is based on the initial seeds, the distribution and quantity of the 

seed matches is important to the performance of this propagation based algorithm. In the 

experiment period, it has been found that many underwater stereo images are not capable of 

obtaining well-distributed feature matches with most of the matches concentrated in the well-

illuminated areas. In addition, the number of initial feature matches is not sufficient either, 
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which reduces the robustness and accuracy of the estimation of epipolar geometry. The reasons 

for these phenomenon are low texture, low overlap, and non-uniform illumination. While it is 

possible to improve the illumination condition to acquire image of better quality and to take 

more images in order to increase overlap, from the algorithm perspective, better and improved 

robust feature detectors are required for underwater image matching. The quantity and 

distribution of sparse feature matches will not only improve the performance of this proposed 

algorithm, but also increase the image network robustness and connectivity, which is helpful 

for the underwater 3D reconstruction. 

As we can see, the major drawback of this proposed method is the high computational cost. 

For each putative match in the propagation step around a seed, their geometric warping 

parameters are computed iteratively which are CPU-intensive and time consuming. A 

promising improvement can be made to increase the computation speed, which is to divide 

image into different blocks and implement the quasi-dense matching algorithm in a multi-

threaded environment, since each block has its own seed matches and they can propagate 

simultaneously without any conflicts with each other.  
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