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ABSTRACT. We used ground-penetrating radar (GPR), GPS and glaciochemistry to evaluate melt
regimes and ice depths, important variables for mass-balance and ice-volume studies, of Upper Yentna
Glacier, Upper Kahiltna Glacier and the Mount Hunter ice divide, Alaska. We show the wet, percolation
and dry snow zones located below �2700ma.s.l., at �2700 to 3900ma.s.l. and above 3900ma.s.l.,
respectively. We successfully imaged glacier ice depths upwards of 480m using 40–100MHz GPR
frequencies. This depth is nearly double previous depth measurements reached using mid-frequency
GPR systems on temperate glaciers. Few Holocene-length climate records are available in Alaska, hence
we also assess stratigraphy and flow dynamics at each study site as a potential ice-core location. Ice
layers in shallow firn cores and attenuated glaciochemical signals or lacking strata in GPR profiles
collected on Upper Yentna Glacier suggest that regions below 2800ma.s.l. are inappropriate for
paleoclimate studies because of chemical diffusion, through melt. Flow complexities on Kahiltna Glacier
preclude ice-core climate studies. Minimal signs of melt or deformation, and depth–age model estimates
suggesting �4815 years of ice on the Mount Hunter ice divide (3912ma.s.l.) make it a suitable
Holocene-age ice-core location.

INTRODUCTION
As our understanding of global climate change improves, it
becomes increasingly clear that regional changes in glacial
mass balance, precipitation and sea-level rise will cause the
greatest societal impacts in the future (Solomon and others,
2007; NRC, 2010). In Alaska, abrupt 20th-century warming
(1.0–2.28C since 1949; Stafford and others, 2000) has
contributed to the rapid retreat of mountain glaciers,
accounting for �10% of modern sea-level rise (Arendt and
others, 2002, 2006; Berthier and others, 2010). Therefore,
quantifying current melt and changes in melt-regime eleva-
tions is a significant concern for the mass-balance commu-
nity, particularly as temperatures continue to rise. Results
from this study provide a baseline for melt-regime elevation
estimates relative to future glaciological mass-balance
studies in Alaska and the Arctic.

The use of higher-frequency ground-penetrating radar
(GPR) systems on temperate glaciers is a challenging en-
deavor primarily because of the significant signal attenuation
via signal scattering from melt or fractured and englacial
debris-rich ice. Low-frequency radar systems are often used
on valley glaciers; however, they are generally limited to
delineating bottom reflections and provide poor strata
resolution (Jacobel and Anderson, 1987; Nolan and others,
1995;Welch and others, 1998; Arcone and others, 2000). For
example, Arcone and others (2000) reached 190m depth on
the Muir Glacier (Alaska) ablation zone at 100MHz but
failed to image strata because they profiled in wet conditions.

Here we provide data collected with a range of mid-
frequencies and at various elevations to image both bedrock

depth and internal strata at three study sites in Alaska. We
hypothesized that conformable strata would exist within the
dry snow and upper reaches of the percolation zone and that,
based on the previous success of Arcone and others (2000),
we could use high-frequency radar to image these strata as
well as the depth to bedrock.

Using the same radar dataset, we also roughly delineate
boundaries between the wet, percolation and dry snow zones
and provide examples that either support or preclude the use
of mid-frequency antennas for studying strata and flow
dynamics of valley glaciers. Results from this study represent
a significant advance on previous studies because we reach
ice depths greater than 300m with a 100MHz antenna,
while simultaneously acquiring high-resolution strata signals
to 75m depth, in the percolation zone. We supplement and
compare these data with 40 and 80MHz GPR profiles which
are also significant radar advancements because we success-
fully penetrate ice depths upward of 480m and are able to
image strata as deep as 180m with these antennas. To our
knowledge, no other temperate or arctic valley glacier study
has imaged this depth of ice or successfully imaged strata at
such great depths with a continuous recording middle- to
high-frequency ground-operated GPR system.

Ice-core site selection can play a significant role in the
consistency and value of ice-core paleoclimate records and
associated climate models. A poor site can result in
ambiguous data that have been altered spatially or tem-
porally, resulting thereafter in poor input into climate
models. Likewise, the application of these paleoclimate
models to future climate scenarios can significantly alter
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future climate predictions. It is important for climate
modelers to understand the strengths, weaknesses and
uncertainty from ice-core records, and this paper provides
a case study of variables that can alter an ice-core record
from its initially deposited state.

Holocene ice-core records from coastal locations in
Alaska, USA, and Yukon, Canada, such as the Eclipse
Icefield, Mount Logan and Mount Bona-Churchill suite,
provide significant contributions to our understanding of
millennial or shorter-term climate variability and pollution
transport in the Pacific Northwest (Yalcin and others, 2001,
2002, 2006a,b; Fisher and others, 2004; Osterberg and
others, 2008). However, several questions remain regarding
the progression of pollution inland (i.e. into interior Alaska)
and the spatial patterns of coastal Pacific versus Arctic
Holocene temperature and precipitation variability.

To address these questions, a millennial- or Holocene-
scale ice core recovered from the Alaska Range would be an
ideal addition to the existing coastal ice-core suite. Criteria
for an appropriate drill site include:

Location within the dry zone or upper reaches of the
percolation zone to minimize chemical diffusion through
melt.

Surface-conformable stratigraphy (SCS) showing minimal
signs of deformation (e.g. folding or unconformities) to
minimize ambiguities in ice-core data.

Depth and accumulation rate that provide an age of ice
greater than 1000 years which would extend the
instrumental record by >900 years in this region.

Well-preserved seasonal isotope and ion chemistry.

Limited localized anthropogenic chemical influence,
such as those potentially caused by climbers or aircraft.

Logistically feasible site that is safe and accessible.

Glacial basins located in the dry snow zone present
potentially ideal sites because of minimal post-depositional
alteration to original physical strata and chemical signals.
This requirement precludes much of the Pacific Northwest
and Alaska because there are few places that sustain dry
snow conditions. For example, dry snow zone average
temperatures are less than –208C (Benson and others, 1975)
and occur at elevations greater than �3500ma.s.l. (Trabant
and March, 1999) in Alaska. Regions high in the percolation
zone that exhibit a small amount of melt are also strong
candidates as long as the melt does not wash out chemical
signals of interest. Under certain circumstances, ice-layer
stratigraphy has been correlated with annual summer
warming (i.e. melt) events (Koerner and Fisher, 1990) and
coincides with seasonal isotope and ion fluxes (Kelsey
and others, 2010). Unfortunately, the steep valley walls and
varied subsurface topography of most valley glaciers can
alter ice stratigraphy during flow. Surface ice-flow velocity
measurements from GPS and internal strata imaged from
GPR are valuable data for determining whether stratigraphy
has been significantly altered and, if so, to what degree and
by what mechanisms.

A previous attempt using radar to locate a suitable drill
site in the dry snow zone near Denali Pass (5180ma.s.l.) on
Mount McKinley (Kanamori and others, 2005) revealed only
50m of ice, unsuitable for a long-term climate record. We
conducted air reconnaissance flights in 2008 over the Alaska

Range at lower elevations likely to have thicker ice yet still
be located in the accumulation zone, and identified three
other potential core sites: Upper Yentna Glacier (MR;
2652ma.s.l.) on Mount Russell; the Kahiltna Pass Basin
(KPB; 3048ma.s.l.) on Mount McKinley (Denali); and an ice
divide (3910ma.s.l.) between the north and south peaks of
Mount Hunter (MH) (Fig. 1).

The primary objective of this paper is to define ice depths
and melt regimes of three study locations while simul-
taneously estimating boundary elevations between different
melt regimes in the Alaska Range. We use GPR, glacio-
chemical and GPS evidence for this objective. Our second-
ary objective is to address strengths and weaknesses
associated with each study location as a potential ice-core
drill site. For our secondary objective, we use GPR to profile
strata and ice depths; GPS rapid static surveys to determine
elevation, velocity and surface strain to infer internal
deformation; and glaciochemical data to determine accu-
mulation rates and spatial variability in glaciochemical
signals across the Alaska Range. To our knowledge, this is
the first multi-site and multi-parameter assessment of melt
regimes, ice depths and potential valley glacier ice-core drill
locations in the Alaska Range.

EQUIPMENT AND METHODS
We collected GPR profiles with a Geophysical Survey
Systems Inc. (GSSI) SIR-3000 control unit coupled with a
variety of antennas. A model 3107 100MHz monostatic
transceiver was used at MR. We used a model 3101
900MHz bistatic antenna unit and a model 5103
400MHz bistatic antenna unit for high-resolution imaging
of the upper �14–40m of firn at KPB, and model 3107
100MHz and model 3200 MLF 15–80MHz bistatic
antennas to image deeper stratigraphy and bedrock depth
at KPB, the latter of which we also used at MH with a
frequency centered near 80MHz. All antennas were hand-
towed at an approximate speed of 0.3–0.5m s–1 and
polarized orthogonally to the profile direction. Profile traces
lasted 100–400ns or 4000–6300ns for shallow or deep
applications, respectively, with 2048–4096 16-bit samples
per trace. We recorded using range gain and post-processed
data with bandpass filtering to reduce noise. We applied
elevation and distance corrections to the profiles using
regularly spaced GPS readings. Post-processing also in-
cluded stacking to increase the signal-to-noise ratio, and a
Hilbert transformation (magnitude only) to amplify the
complex returns from many horizons. Table 1 outlines the
radar profiles collected and antennas used at each site.

We performed a rapid static survey of KPB to quantify
surface ice velocities. We used a Trimble 5700 receiver in
conjunction with a Zephyr Geodetic antenna for base
station corrections. We placed a grid of 25 stakes within
the flat region of KPB and another 12 stakes down-glacier
between 8 and 11 May 2009. Each stake remained in place
following the initial GPS measurement for another 4–9 days
and was relocated by the receiver to create a network of
surface ice-flow velocity vectors. We collected another
16 velocity measurements within and upstream of our study
region between 12 and 26 May 2010 to compare with data
collected in 2009. Error estimates range between 2.0 and
3.6ma–1 based on the associated known errors of �0.05m
per GPS measurement. Velocity surveys were not con-
ducted at MR or MH due to the less complex terrain
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associated with these two locations and time constraints in
the field.

We measured accumulation rate and chemical variability
within shallow firn cores extracted from Kahiltna base camp
(KBC; 10m in 2010), MR (18.77m in 2008), KPB (23.13m in
2008, 14m in 2010) and MH (10m in 2010) (Fig. 1), using
ultra-clean techniques (Kelsey and others, 2010). We ana-
lyzed shallow ice-core and snow-pit samples for major ions,
stable isotopes, trace metals and rare earth elements using
established laboratory methods for low-level ice-core sam-
ples (Osterberg and others, 2006). Annual accumulation
rates were determined at all sites using annual-layer
counting from chemistry records (Holdsworth and others,
1984; Grumet and others, 1998; Moore and others, 2001)

and chemical spikes from known volcanic eruptions in
coastal Alaska. We calculated depth–age models based on
equations from Nye (1953) and Haefeli (1961) using
accumulation rates established from the shallow cores and
maximum ice depths determined from GPR profiles. We
used a density–depth profile from the KPB firn core to adjust
firn density to ice equivalency for each of the depth–age
models (Fig. 2). The KPB core was used for this adjustment
because it represented the deepest and most local record
available for establishing a reliable density profile.

RESULTS AND INTERPRETATIONS

Upper Yentna Glacier, Mount Russell
Upper Yentna Glacier on Mount Russell is located at
62848050.2900 N, 151849043.5600 W in the central-southwest
corner of the Alaska Range (Fig. 3). The site is far from
potential local (i.e. Alaska Range) anthropogenic pollution
sources and is a flat 1 km wide basin providing easy ski-
plane access. The uppermost cirque of the basin (2652m
a.s.l.) is characterized by relatively flat terrain surrounded by
a steep headwall and bergschrund to the west and gradual
slopes originating from the south. The glacier flows north for
1.5 km from the potential core site, and then bends to the
east for another 3 km, prior to reaching the Yentna Icefall.

Within the basin, surface-conformable strata occur in the
upper �40m of GPR profiles (Fig. 4). However, a strong
horizon commonly occurs at 50m depth, likely at the firn/
ice transition, and stratification is discontinuous, weakly

Table 1. Summary of GPR frequencies used and total GPR profile
distances at Upper Yentna Glacier (MR), Kahiltna Pass Basin (KPB)
and ice divide on Mount Hunter (MH). Data for this project were
collected in 2008, 2009 and 2010

Antenna center frequency MR KPB MH

MHz m m m

900 (Model 3101) 2200
400 (Model 3103A) 200
100 (Model 3107) 5000 2440
80 (Model 3200) 2200 3600
40 (Model 3200) 7500

Fig. 1.Map of study locations, with elevations, Kahiltna base camp (KBC), summit of Denali and major glaciers labeled, in the Alaska Range.
The inset map shows the Alaska Range location, with red and blue representing high and low elevations, respectively.
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reflecting or non-existent at greater depths (Fig. 4). Signifi-
cant ice layers from previous melt and refreezing occur in
the snow pit and shallow ice core to 18.77m depth (Fig. 5c).
Thus, we interpret the strong GPR horizon at �50m depth as
a response from a water table resting on the firn/ice
transition zone, originating from meltwater percolating
down through the firn pack. Some hyperbolic diffractions
appear below the firn/ice transition, which we interpret as
localized pockets of melt (Arcone and Yankielun, 2000).
They are not visible in Figure 4. We were unable to image
bedrock depth with the radar system used in 2008 but it did
penetrate ice up to 200m deep. We estimate a maximum
depth of 250m based on the slightly smaller basin
dimensions of the Upper Yentna Glacier basin, relative to
basin dimensions and ice depths measured at the two other
sites (MH and KPB) in this study. Chemical analysis of the ice
core collected in 2008 revealed seasonal chemistry signals,

but an estimated accumulation rate of 1.8m ice eq. a–1 is too
high for extracting a millennial-scale ice core. Ice-flow
velocities were not obtained in the basin, but due to its
location near the upper limits of the glacier, it is likely that
center-line velocities are less than 20–30ma–1, based on
velocities measured at KPB.

Fig. 3. IKONOS 1m resolution satellite image of the potential drill
site on Upper Yentna Glacier (UYG), Mount Russell, showing the
approximate ice-flow direction (arrows), 100MHz GPR profiles and
shallow firn core.

Fig. 4. 100MHz GPR profile from Upper Yentna Glacier. The strong
horizon is interpreted as a water table (WT) perched on the
impermeable firn/ice transition.

Fig. 5. Deuterium isotope ratios and ice layers of shallow firn cores
collected from Mount Hunter (a), KPB (b), Upper Yentna Glacier (c)
and KBC (d; see Fig. 1 for location) showing the increase in signal
amplitude with elevation. SMOW is Standard Mean Ocean Water.
Cores from KPB and MR were collected in May 2008, and cores
from MH and KBC were collected in May 2010. The blue lines
above KPB and MR represent the depth/location of ice layers within
each core. There was only one thin ice layer in the MH firn core,
and the KBC core consisted primarily of large facets, suggesting
melting throughout.

Fig. 2. Depth–density curve from KPB shallow core. The bubble
close-off density of ice was used to estimate depth to the firn/ice
transition, and the profile was used to adjust ice equivalent depths
for the depth–age and flow models.
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Kahiltna Pass Basin, Mount McKinley
The Kahiltna is an alpine valley glacier that originates from
the southwestern flank of Mount McKinley and flows
primarily south out of the Alaska Range. It is the largest
glacier in central Alaska, currently 71 km in length, 475 km2

in area, and has almost 3660m of relief, varying in
elevation from 300 to 3960ma.s.l. (Meier, 1971). KPB is
located at 6384032.9600 N, 151810027.3600 W and 3100m
a.s.l. where it is �3 km from the glacier bergschrund, up-
glacier to the east. The basin is bordered to the west and
north by a ridgeline, and is 800m wide (east–west) by
800m long (north–south). The basin has easy access
because it is close to the heavily traveled West Buttress
mountaineering route on Mount McKinley, and the Denali
National Park Service maintains a nearby ski-plane airstrip
during the summer.

Ice-core and snow-pit samples collected in KPB show
that ice layers represent 9% of the annual-layer thickness
from 2003 to 2008 (Fig. 5b). A 40MHz axial GPR (Fig. 6)
profile collected in May 2010 between the bergschrund to
the north of KPB (3100ma.s.l.) and Camp 1 (2340ma.s.l.)
resolves strata as deep as �180m between KPB and
2800ma.s.l. (Fig. 6c, black arrow), and only �50m deep
at �2800–2600ma.s.l. Down-glacier from �2600ma.s.l., a
complete lack of stratigraphy and a pronounced increase in
radar signal attenuation and noise occurs. It appears that
below �2800ma.s.l., enough melting occurs to destroy
most density or chemistry contrasts, typically resolvable
with radar.

The GPR profile segment between 2600 and 2800ma.s.l.
on Kahiltna Glacier appears similar to radar profiles

collected on MR (2652ma.s.l.) where strata were lacking
below the firn/ice transition zone (Fig. 4) near 50m depth.
Hence, we suggest that elevations of 2600–2800ma.s.l. in
the Alaska Range represent a transition between the
percolation (Fig. 6; PZ) and wet snow zones (Fig. 6; WZ).
We hypothesize that the lower boundary of this zone
(2600m a.s.l.) migrates up-glacier during late summer
(Fig. 6; STZ) and down-glacier during the winter (Fig. 6;
WTZ), because of increased and decreased solar insolation
at higher elevations, respectively. We also suggest that the
lack of strata in radar profiles at 2600–2800ma.s.l. is an
indicator of this seasonal migration pattern. This character-
istic transition is well documented on other glaciers using
similar geophysical techniques (Murray and others, 2007;
Woodward and Burke, 2007).

A comparison of trace-metal crustal enrichment factors
(EFs) measured from snow-pit samples from Upper Yentna
Glacier and KPB reveals that several elements are enriched
by noncrustal sources including sea salt, volcanic aerosols
and atmospheric pollution (Fig. 7). EFs above 10 for Cd, Pb,
Bi, Cu, Zn and As are interpreted as representing dominant
contributions from anthropogenic pollution, but the similar-
ity of the EFs fromMR (rarely visited by recreational climbers
and aircraft) and KPB (heavily visited by recreational
climbers) suggests that the pollution source(s) are regional
(Alaskan) or trans-Pacific (Asian), as has been previously
documented on Mount Logan (Osterberg and others, 2008)
and Eclipse (Yalcin and Wake, 2001). EF >10 for Na is due to
the dominant sea-salt source, while the elevated EF for S is
likely due to volcanic sources with a possible anthropogenic
contribution. Thus, KPB preserves a record of atmospheric

Fig. 6. Center-line 40MHz GPR profile of Kahiltna Glacier from KPB (3100ma.s.l.) to Camp 1 (2340ma.s.l.) collected in May 2010
showing (a) a zoom of the upper 80m depth, (b) the entire depth profile, (c) a zoom of strata visible as deep as 180m in the percolation zone
(black arrow) and (d) the transect over a 0.5m resolution QuickBird satellite image (red line). The profile shows an apparent transition (TZ)
between the wet (WZ) and percolation zones (PZ) at �2600–2800ma.s.l. The lower boundary of this zone likely migrates up-glacier during
summer (STZ; due to increased summer solar radiation) and down-glacier during winter (WTZ). Labeled velocities are from GPS surveys in
2009–10. The significant velocity increase below the transition zone may indicate a thawed bed down-glacier.
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aerosols unaffected by local mountaineering activities and
air support, despite being near the highly traveled (>1000
climbers per year) West Buttress mountaineering route.
During our three field seasons, we noted that climbers
generally travel within a 3m wide trail located on the east
side and >250m from the sample site in KPB; therefore we
suggest that any local contamination is likely confined,
proximal to the trail.

The average accumulation rate at KPB is 0.8�0.2m ice
eq. a–1. This rate is revised from previous, higher estimates
that were based solely on glaciochemistry data from a
shallow ice core collected in 2008 (Kelsey and others,
2010). The new estimate is constrained by the 2009 Mount
Redoubt volcanic eruption, observed in a 2010 shallow core
and 2009 snow-pit samples, and a strong correlation
between glaciochemical signals of the 2008 and 2010
cores. High-frequency (900MHz) radar profiles show min-
imal isochrone thickness variability throughout the basin,
which suggests that the accumulation rate is spatially
consistent (Campbell and others, in press).

GPR profiles (Fig. 8) and surface ice velocity measure-
ments obtained in 2009–10 reveal complex flow dynamics
and associated internal structures that may limit the depth of
a useful core to �150–170m (Campbell and others, in
press). The profile in Figure 8 shows significantly deformed
ice below this depth, which we interpret as including
heavily fractured ice, buried crevasses and relic avalanche
debris. The basin is located at the base of a steep, narrow
valley from which most of the ice flow originates. These
buried features were formed or deposited up-glacier, as ice
flowed through a steep, crevassed and avalanche-prone
region known as Motorcycle Hill, located 1–2 km to the
east. As ice exited the crevasse- and avalanche-prone
regions, surface-conformable strata were deposited creating
an apparent discontinuity between the complex and surface-
conformable stratigraphy visible in GPR profiles.

Mount Hunter ice divide
The ice divide on Mount Hunter (3912ma.s.l.) is a flat area
1000m wide (north–south) and 1200m long (east–west),

situated at 62856020.8100 N, 15185012.3600 W, between the
north and south peaks of the mountain. The site is accessible
via aircraft, and the only major safety hazards are crevasses
and icefalls situated well to the northeast and southwest of
the ice divide (Figs 9 and 10).

The high elevation results in minimal melting. A 10m
deep firn core extracted in 2010 identified one thin melt
horizon, �2 cm thick, suggesting that the ice divide is
presently located in the uppermost percolation zone, and
was likely in the dry snow zone during periods cooler than
present. A strong seasonal isotope signal is present in the
10m ice core, and the seasonal amplitude is greater than
that of the KPB and MR ice cores, indicative of less
chemical diffusion associated with the minimal melt
(Fig. 5). Although we did not obtain surface ice velocities,
they are likely low and deformation is minor because
the site is flat and strata appear minimally deformed in
GPR profiles (Fig. 10). Chemistry profiles (Al, Ca, La, Mg,
Na, Pb, Sr) show a strong seasonal signal, and volcanic
eruption spikes from Mount Redoubt (March 2009) and
Mount Cleveland (2001) are visible as absolute dating
indicators. Based on these records, we estimate an
accumulation rate of 0.3�0.1m ice eq. a–1 at Mount
Hunter. The saddle is also far from anthropogenic activities
that may cause contamination.

Surface-conformable strata to 85m depth are visible in
all GPR profiles collected throughout the basin (Fig. 10).
Radar profiles close to the North and South Peaks show
some cross-cutting horizons, but they were recorded far
from the flat and deep regions characterized by conform-
able strata in the center of the basin. We believe that signal
attenuation causes our inability to image strata at depths
greater than 85m (Arcone and Kreutz, 2009), and that strata
are surface-conformable to the bed because the ice divide
precludes significant deformation. A small region that lacks
internal strata occurs within the SCS of SN3 (Fig. 10; dashed
box). The cause and origin of this feature is unknown. Ice
depths appear to reach 250�30m towards the center of
the basin, but complex bed topography causes multiple
events near the bottom of most GPR profiles (Fig. 10),
making it difficult to obtain a more precise estimate of
maximum depth.

Fig. 7. Crustal EFs from snow-pit samples collected at Kahiltna base
camp, Kahiltna Pass Basin (Kahiltna Pass) and Upper Yentna Glacier
(Mt Russell). The similar signals between each site suggest minimal
local influence from mountaineering activities at KPB or KBC,
where climbing use is far higher than at MR.

Fig. 8. Zoom of 100MHz GPR profile between A and A0 (Fig. 12)
from KPB. Image shows interpreted transition zone (TZ) between
surface-conformable strata (SCS) and complex strata (CS). Thicken-
ing strata (TS) from compression, and relic avalanche debris or
crevasses in the form of hyperbolic events (H) are also visible.
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DEPTH–AGE MODELS
We calculate depth–age models to estimate the maximum
age of ice at each study location (Fig. 11). We use the Nye
model (Nye, 1953; Haefeli, 1961) which assumes a frozen
bed, incorporates a linear thinning parameter with depth,
and was designed for ice flow at or very near a divide,
accounting for vertical strain only. Hence, it is an appropriate

Fig. 9. (a) Panoramic photo of the MH ice divide looking north, showing approximate ice-divide location (dotted line), ice-flow directions
(arrows), location of GPR profile imaged in (b) (EW1) and the GPR profiles in Figure 11 (SN1, SN2, SN3). (b) SCS in a zoom of the top 100m
(B1) and ice depths reaching >250m depth (B2) of radar profile EW1. (c) A US Geological Survey 1 : 24 000 scale topographic map showing
surrounding topography and ice-depth contours (color fill) interpolated from radar profiles. Icefalls and crevasses are situated approximately
at the end of the arrows pointing to the southwest and northeast.

Fig. 10. Series of transverse 80MHz GPR profiles from MH with
locations of each profile shown in Figure 9 (SN1, SN2, SN3).
Surface distance markers for all three profiles are 100m. Each
profile shows complex strata (CS) to the north and SCS towards the
middle. A strong bed horizon from the north dips under false
bottom (FB) events toward the south, and projects to depths greater
than 250m. Cross-cutting events (CC) occur in SN1 and SN3, and a
small region that lacks internal strata occurs within the SCS on SN3
(dashed box).

Fig. 11. Depth–age estimates for MH, KPB and MR, calculated from
models developed by Nye (1953) and Haefeli (1961). The black dot
at 170m depth represents the depth of SCS overlying complex strata
imaged with GPR in KPB. The open circle represents depth and age
of SCS calculated from our flow model.
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conservative depth–age calculation at the Mount Hunter
saddle. The model does not account for accumulated
longitudinal and transverse strain which occurs within and
up-glacier of KPB. Likewise, the significant distance KPB is
located from the origin of flow limits the ability of the Nye
model to calculate a reasonable depth–age relationship in
the basin near the bed. KPB has an accumulation rate of
0.8�0.2m ice eq. a–1 and maximum depth of 287m ice eq.,
resulting in �2047 years of ice based on the Nye model.
Mount Hunter has an estimated accumulation rate of
0.3�0.1m ice eq. a–1 and maximum depth of 258m ice eq.,
resulting in �4815 years of ice. Only �792 years of ice is
estimated via the Nye model on Upper Yentna Glacier, based
on a depth estimate of 250m and accumulation rate of
1.8�0.4m ice eq. a–1.

Geodetic data allow for a different approach to depth–age
modeling at KPB because they can be used to estimate
transport time and accumulated strain of ice as it flows from
one location to another. For example, the distance between
Motorcycle Hill and the middle of KPB where the deepest
SCS exists is �2000m. An approximation of longitudinal
extension (or compression) on the glacier surface can be
calculated between the two sites using

_"x ¼
Z 2000

0

du
dx

� �
dx, ð1Þ

where _"x is strain rate with respect to x, u is the ice velocity
(m a–1) and x is the distance (m) along the flowline. In this
way it is possible to quantify areas of extension and
compression near the surface depending on the net positive
or negative change in velocity between center-line GPS
measurements.

Instead of the Nye model, we use a series of surface
velocity measurements (Fig. 12), a densification model
(Fig. 2) and the average accumulation rate (0.8m ice eq.a–1)

to estimate the number of years represented by the deepest
SCS in KPB, and the deformation this SCS has experienced.
We interpolate GPS surface ice-flow velocities from the base
of Motorcycle Hill to KPB to create velocity contours
(Fig. 13a). We establish a flowline perpendicular to these
contours (Fig. 12) from Motorcycle Hill to the deepest SCS in
KPB and calculate the distance each annual layer traveled
along the flowline by plotting average velocity versus time
and time versus distance. We calculate volumetric strain
rates (Fig. 13b) for each annual layer along the flowline
(Koons and Henderson, 1995), to account for longitudinal
and transverse strain. We use the 23.13m KPB core to
estimate yearly accumulation rates and adjust yearly depths
based on densification (vertical strain) to the depth of the
firn/ice transition (Fig. 2).

From these calculations we estimate that �97 years and
187� 33m of SCS should exist above the CS (Fig. 11). This
model is validated by the reasonable comparison of SCS
depth (150–170m) in KPB imaged with GPR. Only 111m of
SCS thickness is estimated from the flow model using a
constant accumulation rate and vertical strain only. This
suggests that a significant portion of the SCS thickness
(�76m) likely results from longitudinal and transverse strain
causing vertical thickening as ice flows into KPB. Although
we assume spatially and temporally constant accumulation
rates and velocities for this model, the consistency between
GPR profiles and model calculations suggests that our
hypotheses regarding strain, structure formation, flow
dynamics and depth–age approximations in KPB are valid.
The gap between our model depth and GPR depth of SCS is
likely even smaller because we use a constant radar wave
speed of ice (dielectric constant �3.15) to calculate depth of
SCS from radar profiles, whereas snow and firn has a lower
dielectric constant (�1.7–2.4) which results in faster
wave propagation.

Fig. 12. QuickBird 0.5m resolution image of KPB showing velocity vectors collected in 2009–10, an approximate center-line path (black
dotted line) used for the KPB depth–age model, firn-core location, general location of the glacier bergschrund (black dashed line), GPR
profiles used for ice depth interpolation, the GPR profile imaged in Figure 7 (A–A0), a region experiencing vertical thickening of strata (TS)
caused by compression as ice flows into KPB, and approximate locations of avalanche- and crevasse-prone regions.
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DISCUSSION
Table 2 summarizes results from each of the potential deep
ice-core locations relative to our criteria for an appropriate
drill site. The MR site has easy access via ski plane, and
minimal local anthropogenic pollution due to its remote
location. The site experiences significant melt that appears
to destroy the stratigraphy in GPR profiles and likely the
chemistry record of primary interest. The accumulation rate,
>1.8m ice eq. a–1, and depth estimate, 250m, also suggest a
maximum age short of the desired 1000 years.

KPB has easy access and a minimal amount of melt or
local pollution but it is located in the wilderness zone of
Denali National Park, which may limit drilling activities,
equipment usage or logistical support. The flow dynamics
are particularly complex, and surface-conformable strata

exist only in the upper �170m in the northwest corner of
the basin. Although the maximum depth of 300m might
span several thousand years, only the upper �170m appears
useful for paleoclimate research, and the age at this depth is
likely to be �100 years.

The high elevation and cold temperatures of the potential
drill site on Mount Hunter assure minimal melt and
preserved chemistry. Surface-conformable strata are present
throughout the saddle, and the likelihood of significant
deformation is small considering that the site is an ice
divide. The saddle is located well away from any normal
anthropogenic activities, so localized pollution is insignif-
icant. Likewise, a maximum depth of 270m and low
accumulation rate shows promise in obtaining a millen-
nial-scale core. The apparently uncomplicated flow at
Hunter also suggests that useful chemical signals will be
preserved to greater depths than at KPB. Ice-flow velocities
are unknown at Hunter, but velocities are assumed to be low
based on the relatively flat surface topography and ice likely
being frozen to the bed. We plan to address these questions
in the future with the extension of GPR profiles and
collection of surface velocity measurements.

CONCLUSIONS
In the Alaska Range, elevations of �2800–3900ma.s.l.
appear to be located in the percolation zone; locations
below and above these elevations appear to be within the
wet and dry zones, respectively. Hence, future melt volume
estimates in the Alaska Range should be based on most
melt occurring below �3900ma.s.l. Results from this study
suggest that the application of mid-frequency (40–100MHz)
GPR to profile ice depths and stratigraphy of temperate
glaciers is worthy of future efforts. We suggest profiling
temperate glaciers earlier in the melt season to minimize

Fig. 13. Map showing (a) surface velocity contours from Motorcycle Hill (MH) to KPB interpolated from GPS velocity measurements and
(b) volumetric strain rate calculated from velocity vectors. Scale bars for velocity and strain rate are to the left and right, respectively.

Table 2. Comparison of potential drill sites in the Alaska Range:
Upper Yentna Glacier (MR), Kahiltna Pass Basin (KPB) and ice
divide on Mount Hunter (MH)

Criterion MR KPB MH

Surface conformable (m) 50 150 270
Minimum deformation No (melt) No (ice flow/

some melt)
Yes

Preserved chemistry No Yes Yes
Minimal pollution Yes Yes Yes
Easy access Yes Yes Yes
Maximum depth (m) �250 300 270
Accumulation rate (m a–1) �1.8 0.8 0.3
Maximum age (years BP) �972* �2047/�97{ �4815*

*For maximum ice depth.
{For maximum thickness of ice/thickness of SCS.
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signal attenuation via melt, and using high stacking rates to
increase signal-to-noise ratios. The strong bedrock reflectors
visible deeper than 400m depth in the percolation zone
with the 40MHz antenna suggest that far greater depths can
be profiled with mid-frequency GPR systems, particularly
when scattering from melt is reduced during early-season
data collection.

We also suggest that future ice-core efforts in this region
of Alaska should focus on �3000m elevations to assure
minimal chemical diffusion through melt. The presence of
SCS deeper than the firn/ice transition in GPR profiles also
appears to indicate that melt has not destroyed glacio-
chemical signals of interest to ice-core studies. KPB and
Mount Hunter are potential ice-core sites based on their
SCS, preserved chemistry, limited local pollution, ease of
access, and location within the middle and upper reaches
of the percolation zone, respectively. However, the com-
plexities associated with KPB (relic avalanche debris, filled
crevasses, and complex deformation deeper than 170m)
may limit this site to short-term paleoclimate studies. More
reconnaissance is required to further constrain dynamics at
Mount Hunter where �250m depths with SCS are likely
present. We suggest 40MHz GPR and a GPS survey to
determine if flow is as simple and desirable as it appears.
However, these preliminary results suggest that Mount
Hunter is at the elevation boundary of the dry snow zone
and may represent one of the best high-elevation drill sites
in the Alaska Range.

ACKNOWLEDGEMENTS
We thank the US National Science Foundation’s Office of
Polar Programs (awards 0713974 to K. Kreutz and 0714004
to C. Wake), the Denali National Park Service, the US
Army Cold Regions Research and Engineering Laboratory,
the University Navstar Consortium (UNAVCO), the Dan
and Betty Churchill Exploration Fund, the University of
Maine Graduate Student Government, and Talkeetna Air
Taxi, for funding, equipment and logistical support. We
thank Ron Lisnet and the University of Maine Department
of Public Relations. We appreciate significant field and
data-processing help from Mike Waszkiewicz, Eric Kelsey,
Ben Gross, Tom Callahan, Max Lurie, Loren Rausch, Austin
Johnson, Noah Kreutz, Sharon Sneed and Mike Handley.
Lastly, we appreciate input and editing efforts from Peter
Koons, Roger Hooke, Bernd Kulessa and two
anonymous reviewers.

REFERENCES
Arcone SA and Kreutz K (2009) GPR reflection profiles of Clark and

Commonwealth Glaciers, Dry Valleys, Antarctica. Ann. Gla-
ciol., 50(51), 121–129

Arcone SA and Yankielun NE (2000) 1.4GHz radar penetration and
evidence of drainage structures in temperate ice: Black Rapids
Glacier, Alaska, U.S.A. J. Glaciol., 46(154), 477–490

Arcone SA, Lawson DE, Moran M and Delaney AJ (2000) 12–100-
MHz profiles of ice depth and stratigraphy of three temperate
glaciers. In Noon D, Stickley GF and Longstaff D eds. GPR 2000,
Eighth International Conference on Ground Penetrating Radar,
23–26 May 2000, Gold Coast, Australia. International Society
of Photo-optical Instrumentation Engineers, Bellingham, WA,
377–382 (SPIE Proceedings 4084)

Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS and
Valentine VB (2002) Rapid wastage of Alaska glaciers and

their contribution to rising sea level. Science, 297(5580),
382–386

Arendt A and 7 others (2006) Updated estimates of glacier volume
changes in the western Chugach Mountains, Alaska, and a
comparison of regional extrapolation methods. J. Geophys. Res.,
111(F3), F03019 (10.1029/2005JF000436)

Benson CS, Bingham DK and Wharton GB (1975) Glaciological
and volcanological studies at the summit of Mount Wrangell,
Alaska. IAHS Publ. 104 (Symposium at Moscow 1971 – Snow
and Ice), 95–98

Berthier E, Schiefer E, Clarke GKC, Menounos B and Rémy F (2010)
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