Cooper pair localization in a-Bi thin films near the superconductor-insulator transition

Shawna M. Hollen
University of New Hampshire - Main Campus

H Q. Nguyen
Brown University

E. Rudisaile
Brown University

J Shainline
Brown University

G. E. Fernandes
Brown University

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/physics_facpub
Authors

This conference proceeding is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/physics_facpub/427
Cooper pair localization in a-Bi thin films near the superconductor-insulator transition

S.M. HOLLEN, H.Q. NGUYEN, E. RUDISAILE, J. SHAINLINE, Brown University, Department of Physics, G. FERNANDES, J.M. XU, Brown University, Division of Engineering, J.M. VALLES, JR., Brown University, Department of Physics — Ultrathin films near the Superconductor-Insulator Transition (SIT) can exhibit Cooper pair transport in their insulating phase. This Cooper Pair Insulator state is achieved in amorphous Bi films patterned with a nanohoneycomb array of holes. We will present evidence from a number of experiments on these substrates supporting that 1) thickness variations, which result in variations in T_c and Δ, serve to localize the Cooper pairs; 2) the weak links between these superconducting islands control the SIT. Finally, we will discuss our most recent experiments that aim to characterize this Cooper pair insulator state and confirm the role of the thickness variations in the localization of Cooper pairs.

1This work was supported by the NSF through No. DMR-0907357, by the AFRL, and by the ONR.

S. M. Hollen
Brown University, Department of Physics

Date submitted: 23 Dec 2010