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Abstract—A current challenge in performing airport obstruction 
surveys using airborne lidar is lack of reliable, automated 
methods for extracting and attributing vertical objects from the 
lidar data.  This paper presents a new approach to solving this 
problem, taking advantage of the additional data provided by 
full-waveform systems.  The procedure entails first deconvolving 
and georeferencing the lidar waveform data to create dense, 
detailed point clouds in which the vertical structure of objects, 
such as trees, towers, and buildings, is well characterized.   The 
point clouds are then voxelized to produce high-resolution 
volumes of lidar intensity values, and a 3D wavelet decomposition 
is computed.  Vertical object detection and recognition is 
performed in the wavelet domain using a multiresolution 
template matching approach.  The method was tested using lidar 
waveform data and ground truth collected for project areas in 
Madison, Wisconsin.  Preliminary results demonstrate the 
potential of the approach. 

Keywords-lidar; waveform; wavelet; 3D; object detection; 
airport obstruction surveys 

I.  INTRODUCTION  
The U.S. National Geodetic Survey (NGS) manages an 

aeronautical survey program, which provides airport 
obstruction survey data to the Federal Aviation Administration 
(FAA).  The primary goal in an airport obstruction survey is to 
accurately geolocate vertical objects, such as trees, poles, 
antennas, towers, and buildings, that penetrate obstruction 
identification surfaces (OIS) enveloping the airfield and 
approach paths.  NGS airport obstruction surveys are currently 
performed through a combination of photogrammetric and field 
survey techniques, which have been proven to yield very 
accurate, reliable obstruction data [1].  However, these methods 
are also time-consuming and costly.  These factors have 
precipitated an increasing interest, particularly within the 
private sector, in using emerging remote sensing technologies 
to increase efficiency and reduce costs. 

One remote sensing technology that appears especially well 
suited for this application is airborne lidar (also referred to as 
“airborne laser scanning”), which enables accurate, efficient 
mapping of terrain and elevated features, such as tree canopy.  
However, while previous studies have demonstrated that lidar 
can be used to meet certain airport obstructions surveying 
standards [1-3], some problems remain unsolved.  Most 
significantly, reliable, automated methods for extracting and 

attributing airport obstructions from lidar data do not currently 
exist.  Therefore, at present, lidar airport obstruction surveys 
require extensive manual labor, negating some of the intended 
benefits [3].    

The work presented here aims to solve this problem through 
the application of novel processing and analysis techniques that 
take advantage of recent advances in lidar technology.  Unlike 
earlier commercial lidar systems, which only recorded a small 
number of returns (e.g., one to four) per transmitted laser pulse, 
many of the latest commercial systems record the entire return 
waveform at very high sampling frequencies (~1 GHz), 
typically yielding a few hundred digitized samples per pulse 
[4].  The methodology described here was specifically designed 
to exploit both the additional data captured by these full-
waveform systems and the benefits of 3D wavelet analysis for 
vertical object detection and recognition.   

II. METHODS 
The approach to automatically extracting and attributing 

vertical objects, such as airport obstructions, from full-
waveform lidar data is illustrated graphically in Fig. 1.  It can 
be summarized as follows: 1) the lidar waveform data are 
deconvolved and georeferenced to produce dense, detailed 
X,Y,Z,I point clouds (where X, Y, and Z denote spatial 
coordinates in the mapping frame and I represents intensity); 2) 
the output point clouds are voxelized to generate high-
resolution volumes of lidar intensity values; 3) 3D wavelet 
decompositions of the volumes of lidar intensity values are 
computed; and 4) vertical object detection and recognition is 
performed in the wavelet domain using a multiresolution 
template matching approach.   

The motivation for deconvolving the waveform data is that 
the desired (ideal) signal consists of a train of spikes in time, 
where each spike corresponds to an individual laser reflection, 
with its amplitude proportional to the amount of backscattered 
energy.  For example, in a forested area, the first spike in a 
particular idealized return might correspond to the reflection 
from the topmost branch or leaf of a tree, with the amplitude of 
the spike being proportional to the strength of the return from 
that surface.  Likewise, the second spike might correspond to a 
reflection from the next lower branch, and so forth. An actual 
received waveform can be considered a blurry, noisy version of 
this ideal signal, as expressed in the observation model 
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Figure 1.  Primary steps in the approach to vertical object detection and 
recognition in full-waveform lidar data. 

].[][][][ nngnxny η+∗=                     (1) 

In (1), y[n] is the observed waveform, x[n] is the ideal signal, 
g[n] is a degradation function, η[n] is additive noise, and “*” 
denotes convolution.   

In this study, two different signal restoration approaches 
were investigated for “recovering” the ideal signal from the 
observed waveform: Wiener filtering and the expectation- 
maximization (EM) deconvolution algorithm described in [5].  
The Wiener filter was determined to have serious drawbacks 
for this application.  Specifically, the signals are not well 
characterized in the frequency domain, leading to significant 
difficulty in achieving the desired level of deblurring and 
denoising of the observed waveforms using the Wiener filter 
approach.  Additionally, the Wiener-filtered waveforms 
exhibited pronounced ringing (artificial oscillations around 
sharp edges), resulting in false points above and below the 
ground and objects in the output lidar point clouds.   

The EM deconvolution algorithm of [5] enables these 
limitations to be overcome by utilizing the additional 
information that the ideal signal (modeled as a random set of 
spikes in time) is sparse.  This algorithm numerically calculates 
the maximum a posteriori (MAP) estimate of the signal by 
alternating between Fourier-based estimation (the E-step) and 
denoising in the wavelet domain (the M-step).  Our 
implementation parallels the formulation in [6], except that the 
denoising M-step is actually performed directly in the time 
domain, since the time domain representation of the ideal 
signal (spike train) is already as sparse as possible.  A favorable 
feature of this algorithm is the provision of a tunable 
parameter, τ, that directly controls the number of spikes in the 
output signal and, hence, the density of the resulting point 
cloud.  Increasing τ decreases the point density but also reduces 
the number of false alarms.  Decreasing τ has the opposite 
effect.  For applications such as airport obstruction surveying in 
which the consequences of a miss (i.e., an obstruction that the 
software fails to detect) are more severe than the consequences 
of a false alarm, τ can be decreased to produce a more 
conservative detector [7].   

Fig. 2 shows an example of an observed waveform 
deconvolved using both the Wiener filter and EM algorithm.  
As illustrated in this figure, the EM algorithm achieves much 
better results than the Wiener filter; the deconvolved signals 
are much sharper, the noise has been suppressed to a much 
greater extent, and the artifacts produced by the Wiener filter 
(i.e., ringing) do not occur.  After deconvolution, the output 
spike trains are georeferenced using the laser geolocation 
equation of [2] to generate dense, detailed point clouds in 
X,Y,Z,I format. 

The justification for volume representation (i.e., the 3D grid 
of lidar intensity values depicted in Fig. 1) is twofold.  First, it 
avoids the drawbacks of surface representations, such as digital 
surface models (DSMs) and triangulated irregular networks 
(TINs), which are the most commonly-used data models in 
lidar processing and analysis.  These types of surface 
representations cannot adequately represent vertical structure, 
because only one elevation per (X,Y) coordinate pair is 
permitted (discontinuities in Z and concave vertical shapes are 
not allowed) [8].  This leads to loss of information about the 
interior of tree canopies, building sidewalls, roof overhangs, 
and other types of vertical structure.  Furthermore, when using 
these surface models, it can be difficult to distinguish between 
erroneous elevations (e.g., due to a bird or electronic noise) and 
an actual object, such as a pole.  The second advantage of the 
volume representation is facilitation of 3D wavelet analysis.  
Potential drawbacks of the volume representation, such as loss 
of information due to interpolation and large file sizes, are 
mitigated through 3D wavelet representation. 

2D wavelet-based approaches to segmenting lidar data into 
ground (“bare earth”) and objects are discussed in [9-12] and 
related works by these authors.  A unique characteristic of this 
new approach is utilization of a 3D wavelet transform that has 
been custom designed to facilitate extraction of objects with 
certain horizontal and vertical structures.  Although the design 
and details of the scaling and wavelet filters used in this 
research are beyond the scope of this overview paper, three 
important properties of our wavelet representation can be 
summarized as follows: 1) very good localization in space, 
achieved through use of very short (3-tap) filters; 2) detail 
coefficients that record sharp transitions in intensity, but 
disregard linear transitions and constant (flat) areas; and 3) 
simple, fast inversion.  Fig. 3 shows a two-scale wavelet 
decomposition tree based on this 3D wavelet representation.  

 

              
Figure 2: Example of an actual digitized waveform (top), after Wiener filtering 
(middle), and after applying the EM deconvolution algorithm (bottom). 
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Figure 3: Two-scale wavelet decomposition tree. 

In Fig. 3,  denotes level-j approximation coefficients; 

, and represent horizontal (X and Y), 
vertical (Z) and rotationally-invariant (RI) detail coefficients at 
level j, respectively; and I is the original 3D lidar intensity 
image, which is used as the highest-scale (level 0) 
approximation.  In the vertical object detection/recognition 
algorithm described below, a two-scale decomposition is 
computed, with the typical volume sizes and resolutions listed 
in Fig. 3.      
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Fig. 4 shows an example of the first level of wavelet 
decomposition, where the input consists of the volume of lidar 
intensity values for a tower in one of the Madison project areas.  
The original 3D lidar intensity image (top left in the figure) 
serves as the approximation at the highest scale (level 0).  The 
approximation subimage at level -1 is shown in the top right, 
while the highest-scale composite detail image is shown in the 
bottom left.  The level-j composite detail coefficients, , are 
defined as 
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The final step in the approach is multiresolution template 
matching by normalized cross-correlation.  The basic idea 
behind template matching is quite straightforward: a reference 
template of the object to be detected is translated pixel-by-pixel 
(or voxel-by-voxel in 3D) through the intensity image, and, at 
each location, a similarity or difference measure is computed.  
One common similarity measure is the so-called normalized 
cross-correlation (NCC) defined as  
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In (3), f is the 3D intensity image, t is the reference template, 
t is the mean of t, and f is the mean of f in the sub-volume 
overlapped by the template.  The denominator in (3) reduces 
the sensitivity to within-scene variation in signal energy (due, 
for example, to variation in flying height) and normalizes the 
output such that cN is always in the interval .   1] ,1[−

Although NCC-based template matching is typically 
implemented in the spatial domain, it can also be performed 
directly in the wavelet domain (e.g., on a wavelet subimage) 
[13, 14].  In this work, a wavelet domain implementation is 

used, wherein the correlation is computed directly between the 
magnitudes of the wavelet coefficients of the 3D lidar intensity 
image and those of the template.  That is, f and t in (3) are the 
absolute values of the composite detail coefficients (2) for the 
3D lidar intensity image and reference template, respectively.  
Benefits of the wavelet domain implementation include 
increased computational efficiency using a coarse-to-fine 
matching strategy and improved performance, since the 
wavelet representation has been specifically designed to 
facilitate identification of airport obstructions.  At the coarse 
resolution (level -1), a relatively crude, conservative detection 
strategy is implemented by using generic (artificial) templates 
consisting of vertical cylinders of constant value 1.  At 
locations where a detection is registered, matching is repeated 
at level 0 (the original resolution of the 3D lidar intensity 
image) using templates for various vertical objects (e.g., 
deciduous and coniferous trees, poles, towers, and buildings) 
created from training data and stored in a library.  To account 
for differences in spatial orientation, each template was rotated 
about the Z-axis in 20o increments, and each rotated template 
was added to the library.    

III. EXPERIMENT 
To test the described approach, lidar waveform data were 
collected over two project areas in Madison, Wisconsin on 
June 23, 2006 using an Optech ALTM 3100 and waveform 
digitizer.  The data were acquired at a flying height of 800 m 
(AGL), with an average flying speed of 70 m/s, a pulse 
repetition frequency of 70 kHz, a scan angle of ± 17.3o and a 
scan frequency of 49.8 Hz.  One of the two project areas was 
used for training (e.g., designing the template library used in 
the detection/recognition algorithm), while the other was used 
for testing.  In addition to lidar waveform data, high-resolution 
aerial imagery was acquired for the same two project areas 
using a medium-format, directly-georeferenced digital camera 
onboard a NOAA aircraft.  The imagery, post-processed 
GPS/IMU data, and a 1/3-arcsecond USGS DEM were used to 
produce 0.3-m resolution orthophotos.  Lastly, field surveys 
were performed to obtain ground truth for 35 vertical objects in 
each of the two project areas.   

 
Figure 4: First level of wavelet decomposition, where the input is a 3D lidar 
intensity image for a tower in one of the Madison project areas.   
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Figure 5: Comparison of point clouds produced from full-waveform lidar data 
using the algorithms described here (right column) with point clouds generated 
from discrete-return data processed using the manufacturer’s software (middle 
column).  The objects are a tower and tree, as shown in the photos at left.   

IV. RESULTS AND ANALSYIS 
To test whether full-waveform lidar data can be used to 

increase the amount of useful information for airport 
obstruction surveying, point clouds generated through the first 
step in Fig. 1 were compared with point clouds generated from 
discrete-return data output from the manufacturer’s software.  
The results showed that the full-waveform data, processed 
using the described algorithms, yielded a 252% increase in the 
average number of points on vertical objects in the test site, 
with a negligible increase in the amount of noise.  Examples 
are shown in Fig. 5. 

The final step is to investigate whether the volume 
representation and 3D wavelet analysis (steps 2-4 of Fig. 1) 
lead to better vertical object detection and recognition results 
than conventional approaches using surface representations.  
To this end, the results are being compared against those 
obtained using a DSM generated from the Madison lidar data 
and the vertical object detection software described in [15].  
Preliminary results indicate that the described methods increase 
detection rates by over 15%.  Classification accuracy is still 
being assessed, as the template library used in the detection and 
recognition software is not yet complete.  The software 
described in [15] differs from ours in several key ways: 
namely, it is efficient, user-friendly commercial software, and 
it has been optimized for InSAR-derived DSMs, rather than 
raw lidar point clouds.  However, the large increase in 
detection rates indicates that, for our particular application of 
lidar airport obstruction surveying, volume representations and 
3D wavelet analysis can enhance obstruction detection.   

V. SUMMARY AND CONCLUSIONS 
A new methodology for detection and recognition of 

vertical objects in lidar data has been described.  The approach 
was specifically designed to take advantage of both the 
additional information contained in full-waveform data and the 
benefits of multiresolution wavelet analysis.  Preliminary 
results indicate that the approach has significant potential for 

airport obstruction surveying applications.  Future work might 
involve testing in a wider variety of project areas and 
operational conditions.  Additionally, the approach may be 
adapted for detection of bottom hazards in bathymetric lidar 
data.   
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