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Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics.
Its spatiotemporal distribution and generation mechanism are presently the object of active research. We
here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van
Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss
and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric
hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The
shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly
prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause
removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance
of plasmaspheric hiss.

1. Introduction

Plasmaspheric hiss is a broadband whistler mode emission in the terrestrial plasmasphere and plasmaspheric
plumes [Russell et al., 1969; Thorne et al., 1973; Summers et al., 2008]. It was widely considered to be struc-
tureless and incoherent, but its fine structures have been reported recently [Summers et al., 2014]. Hiss waves
typically occur in the frequency range from ∼0.1 kHz to several kilohertz [Hayakawa and Sazhin, 1992] and
even extend to the lower frequency 20 Hz [Li et al., 2013]. The generation mechanism for plasmaspheric hiss is
still under debate. Candidate mechanisms include the excitation by electron cyclotron instability in the outer
plasmasphere [Thorne et al., 1979; Chen et al., 2014; Summers et al., 2014], and the origination from lighten-
ing whistlers [e.g., Sonwalkar and Inan, 1989; Green et al., 2005] or whistler mode chorus waves outside of the
plasmasphere [Bortnik et al., 2008, 2009].

Through cyclotron resonance, hiss waves can cause the pitch angle scattering of radiation belt electrons over a
wide energy range from∼0.1 MeV to several MeV [Horne and Thorne, 1998; Summers et al., 1998]. Such physical
process contributes to the formation of the slot region separating the inner and outer radiation belts during
quiet times [e.g., Lyons and Thorne, 1973; Abel and Thorne, 1998; Albert, 1994; Meredith et al., 2007] and the
precipitation loss of outer radiation belt electrons during storm times [e.g., Li et al., 2007; Shprits et al., 2009;
Su et al., 2011a; Mourenas and Ripoll, 2012; Thorne et al., 2013; Ni et al., 2014]. Hence, the information on the
global spatiotemporal distribution of hiss is required to understand and/or predict the evolution of the elec-
tron radiation belt [Shprits et al., 2009; Subbotin et al., 2010; Su et al., 2010, 2011b; Tu et al., 2013; Glauert et al.,
2014]. Based on the CRRES observations, Meredith et al., [2004, 2007] showed the statistical dependence of
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Figure 1. Interplanetary and magnetospheric parameters: (a) solar wind magnetic field magnitude B; (b) three components (Bx , By , and Bz) of solar wind
magnetic field in the GSM coordinate system; (c) solar wind proton number density Nsw; (d) solar wind bulk speed Vsw; (e) geomagnetic activity indices SYM-H
and AE; (f ) magnetopause nose location Lmp.

SU ET AL. DISAPPEARANCE OF PLASMASPHERIC HISS 3130



Geophysical Research Letters 10.1002/2015GL063906

hiss waves on substorm activity. Based on the THEMIS observations, Golden et al. [2012] gave a statistical hiss
distribution model driven by solar wind parameters and geomagnetic activity indices. Based on the Cluster
observations, Agapitov et al. [2013] presented the statistical characteristics of hiss wave normal angles. Based
on the Polar observations, Tsurutani et al. [2015] emphasized the influence of solar wind ram pressure on
hiss waves. However, it remains to be determined to what extent these statistical models can reproduce the
realistic variability of hiss waves.

In this letter, we report a plasmaspheric hiss event observed by the Van Allen Radiation Belt Storm Probes
(RBSP) [Mauk et al., 2013] during 8–9 October 2013. An interplanetary shock triggered a strong substorm
(with maximum AE ≈ 1400 nT) but simultaneously quenched the plasmaspheric hiss for about 5 h, contrary
to the statistical picture that strong substorm [Meredith et al., 2004] or solar wind with high ram pressure
[Tsurutani et al., 2015] enhance hiss activity. Note that Thorne et al. [1974] had reported two substorm events
with the reduction of duskside hiss. To our best knowledge, this is the first report on the shock-induced
disappearance of plasmaspheric hiss. This special event exhibits the significant and complex variability of plas-
maspheric hiss and provides a good opportunity to test the generation mechanisms for plasmaspheric hiss.

2. Event Overview

Figure 1 plots the interplanetary and magnetospheric parameters from 10:00 UT on 8 October 2013 to
04:00 UT on 9 October 2013. The solar wind magnetic field B, ion number density Nsw and bulk speed Vsw

were observed by the Magnetic Fields Experiment [Smith et al., 1998] and the Solar Wind Electron, Proton, and
Alpha Monitor [McComas et al., 1998] on board the Advanced Composition Explorer [Stone et al., 1998]. The
time-shifted interplanetary parameters can be used to determine the location of the magnetopause [Shue
et al., 1998]. The geomagnetic indices SYM-H and AE were provided by the World Data Center for Geomag-
netism, Kyoto. The interplanetary shock driven by a coronal mass ejection can be clearly identified at 19:42 UT
on 8 October 2013. After about 35 min, the shock compressed the magnetosphere (with the magnetopause
nose shrinking to Lmp ∼8.5) and caused the geomagnetic storm sudden commencement (abrupt increase
of SYM-H index from −10 nT to 50 nT). Slightly later, the shock further triggered a strong substorm with the
maximum AE ≈ 1400 nT.

Figure 2 shows the waves observed by the Electric and Magnetic Field Instrument Suite and Integrated
Science instrument suite (EMFISIS) [Kletzing et al., 2013] on board the twin RBSP satellites. The time range from
10:00 UT on 8 October 2013 to 04:00 UT on 9 October 2013 covered approximately two orbital periods of the
RBSP satellites. At the shock arrival time (corresponding to the peak of SYM-H), the RBSP-A satellite was in the
slot region (L ≈ 3.3) and the RBSP-B satellite was approximately at the center of outer radiation belt (L ≈ 5.3).
The upper hybrid resonance bands (bright lines) were clearly visible in the electric power spectral densities
(Figures 2a and 2c) of the High-Frequency Receiver (HFR). These upper hybrid frequencies (positively corre-
lated with the background electron density [Kurth et al., 2014]) were above 60 kHz most of the time, indicating
the locations of RBSP satellites in the plasmasphere. In the HFR channel, the shock-induced disturbances were
quite evident for RBSP-B but invisible for RBSP-A. The plasmaspheric hiss waves with frequencies from 50 Hz
to 1 kHz (Figures 2b and 2d) were detected by the Waveform Receiver (WFR). In the first orbital period, both
RBSP satellites almost continuously received hiss waves. Around 13:00 UT on 8 October 2013, there was an
intensification in the hiss spectrums of both RBSP satellites, probably caused by a weak substorm (Figure 1e).
Around 17:00 UT on 8 October 2013, the hiss intensity observed by RBSP-A was modulated by the background
electron density [Chen et al., 2012d]. In the second orbital period, the hiss observed by both RBSP satellites
abruptly ceased at the peak of the SYM-H index. After about 5 h, the hiss waves recovered with much stronger
intensities (Figure 2d).

Figures 3 and 4 present the observations of background electron distributions and electromagnetic fields by
the twin RBSP satellites. The omnidirectional/differential electron fluxes were collected by the Helium Oxygen
Proton Electron (HOPE) Mass Spectrometer [Funsten et al., 2013], Magnetic Electron Ion Spectrometer (MagEIS)
[Blake et al., 2013], and Relativistic Electron-Proton Telescope (REPT) [Baker et al., 2013] of the Energetic Particle,
Composition, and Thermal Plasma (ECT) suite [Spence et al., 2013]. The magnetic field and electric field were
provided by the EMFISIS Magnetometer and Electric Fields and Waves (EFW) instruments [Wygant et al., 2013].
For the electron fluxes over a wide energy range, the RBSP-A observations responded weakly to the shock
arrival, but the RBSP-B observations exhibited a sudden enhancement up to 2 orders of magnitude with the
shock arrival. When the RBSP-A satellite went into the outer region (L> 3.6), it observed the drift echoes of
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Figure 2. (a–d) Electric/magnetic field spectral density in the HFR/WFR channels observed by the twin RBSP satellites. Note that the superposed solid dots
represent the SYM-H index.

relativistic electrons (Figure 3d). Both spacecraft detected an increase in the magnetic field strength after the
shock hit (most easily observed in Figure 4e due to the lower preshock field). The shock-induced variation
in electric fields detected by both RBSP satellites had comparable peak amplitudes (10 mV/m) but different
fluctuating periods (∼3 min for RBSP-A and ∼6 min for RBSP-B).

3. Discussion

There are generally three candidate generation mechanisms for plasmaspheric hiss (see section 1). Consider-
ing the poor connection between lightning and shock, we exclude the origination from lightening whistlers
[Sonwalkar and Inan, 1989; Green et al., 2005]. If plasmaspheric hiss originates from plasmatrough chorus [e.g.,
Bortnik et al., 2008, 2009; Chen et al., 2012c], the following four stages would be involved: (1) excitation of
chorus outside the plasmasphere, (2) propagation and Landau damping or cyclotron amplification of chorus,
(3) refraction of chorus into the plasmasphere, and (4) amplification of hiss within the plasmasphere. In fact,
the isolated occurrence of the fourth stage corresponds to the other generation mechanism, excitation by
electron cyclotron instability [e.g., Thorne et al., 1979; Chen et al., 2014; Summers et al., 2014]. Obviously, the first
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Figure 3. RBSP-A observations on the (a–d) omnidirectional/differential electron fluxes and (e) electromagnetic fields
around the shock arrival time.

three stages depend significantly on the electron distributions in the plasmatrough, unavailable due to the
limited orbital coverage of the RBSP satellites. The fourth stage is controlled by the plasmaspheric electron dis-
tribution, available at the RBSP orbital regions. Here we first infer the global response of inner magnetospheric
plasma to the shock and then discuss the potential effects of the shock on all four stages.

3.1. Inner Magnetospheric Plasma Response
The shock caused the prompt acceleration of electrons over a wide range of energies and pitch angles
(Figures 3 and 4). The relativistic (MeV) electron flux enhancement occurred in the region L ≳ 3.6, while the
suprathermal (keV to tens of keV) electron flux enhancement primarily emerged in the outer region L ≳ 5.
The possible energization mechanisms include the following: (1) betatron acceleration (conserving the first
adiabatic invariant), (2) Fermi acceleration (conserving the second adiabatic invariant), and (3) parallel elec-
tric field acceleration. For the high-energy electrons, the betatron/Fermi acceleration might be dominant
[Li et al., 1993; Hudson et al., 1997; Foster et al., 2015]. For the low-energy electrons, the Fermi acceleration
was not applicable due to the long bounce period [Ukhorskiy and Sitnov, 2013], and the betatron accelera-
tion and the parallel electric field acceleration might be dominant [e.g., Tsurutani et al., 2001; Peng et al., 2011].
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Figure 4. RBSP-B observations on the (a–d) omnidirectional/differential electron fluxes and (e) electromagnetic fields around the shock arrival time.

A detailed and accurate analysis of the electron energization process is beyond the scope of this letter and is
left for future investigation.

In addition, the shock and the subsequent coronal mass ejection could highly compress the magnetosphere
and remove the outer magnetospheric plasma through the “magnetopause shadowing” process [e.g., Turner
et al., 2012]. The shock-induced compression of the plasmasphere could also occur, as shown in previous sim-
ulations [e.g., Samsonov et al., 2007] and observations [e.g., Zhang et al., 2012]. During the geomagnetic storm
driven by the shock and the subsequent coronal mass ejection, the plasmaspheric plume might gradually
form due to the enhanced convection electric field [e.g., Goldstein et al., 2005].

3.2. Excitation of Chorus Outside the Plasmasphere
Generally speaking, the chorus waves are excited through the cyclotron resonance with anisotropic suprather-
mal electrons [e.g., Kennel and Petschek, 1966; Nunn et al., 1997; Omura et al., 2008; Li et al., 2009]. As discussed
in section 3.1, we expect a prompt increase of suprathermal electron fluxes after the shock, which could
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Figure 5. Suprathermal electron PSDs (a) before and (b) after shock at L = 8.0 with circles for the hypothetical
observations and lines for the simulations. Note that the suprathermal electron PSDs in the plasmatrough (L = 8.0) have
been assumed to be the tenfold of those observed by RBSP-B in the plasmasphere (L = 5.3).

favor the excitation of chorus waves. Without the subsequent chorus damping during propagation (see
section 3.3), such prompt energization process would intensify (rather than reduce) the plasmaspheric hiss.
During 21:00–24:00 UT on 8 October 2013, the magnetopause nose shrank to about Lmp = 7–8 (see Figure 1f ),
quite close to the preshock plasmapause L ≳ 6.2 (Figure 2). The drastic removal of source electrons for cho-
rus by the magnetopause shadowing could contribute largely to the several-hours-long disappearance of
plasmaspheric hiss waves.

3.3. Propagation and Landau Damping or Cyclotron Amplification of Chorus
The chorus waves experience Landau damping/cyclotron amplification by the suprathermal electrons in the
course of propagation toward higher latitudes [e.g., Bortnik et al., 2011; Chen et al., 2012a]. The intuitive idea is
that the enhanced Landau damping would interrupt the propagation of chorus. We attempt here to estimate
the shock-induced variation in the Landau damping rate.

Considering that the plasmasphere had extended to at least L = 6.2 (Figure 2), we specifically calculate the
Landau damping rates at a selected plasmatrough location L = 8. Based on the statistical results of Li et al.
[2010], we assume that the suprathermal electron fluxes at L = 8 equaled tenfold of those observed by RBSP-B
in the outer plasmasphere at L = 5.3. Figure 5 shows the “hypothetically observed” (circles) and modeled
(lines) suprathermal electron phase space density (PSD) before and after the shock arrival. The modeled PSD
F contains N = 4 components

F(v⊥, v∥) =
N∑

i=1

Fi, (1)

Fi =
ni

(
√
𝜋Vthi

)3
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−
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−
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V2
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)]}
.

(2)

For the ith plasma component, ni is the density, Vthi
=
√

2Ti∕me and Vdri
are the field-aligned thermal veloc-

ity and the normalized drift velocity, 𝛼1i
and 𝛼2i

characterize the temperature anisotropy and the size of loss
cone, and Δi controls the depth of loss cone. The total electron number density is taken to be constant
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Table 1. Fitting Parameters for Electron PSDs Before and After the Shock

Component ni(m−3) Ti (keV) Δi 𝛼1i
𝛼2i

Vdri

Pre

1 2.2900 × 106 0.0028 1.0000 1.0000 0.5000 0

2 1.3000 × 105 0.0348 1.0000 1.0000 0.5000 0

3 6.0000 × 104 0.2054 0.6000 1.2491 0.1249 0

4 2.0000 × 104 2.7321 0.6000 1.0000 0.2000 0

Post

1 1.9550 × 106 0.0028 1.0000 1.0000 0.5000 0

2 3.2000 × 105 0.0432 1.0000 1.0000 0.5000 0

3 1.6000 × 105 0.2843 0.5000 1.2100 0.2420 0

4 6.5000 × 104 3.0960 0.4000 1.0615 0.6369 0

Ne = 2.5×106m−3 [Sheeley et al., 2001]. Adopting those parameters listed in Table 1 leads to reasonable agree-
ments between the modeled and hypothetically observed distributions. Clearly, the suprathermal electron
PSDs increased by a factor of 2–6 with the larger anisotropy after the shock.

These energy and pitch angle-dependent PSDs can be used to analyze the amplification/damping of plasma
waves [e.g., Kennel and Engelmann, 1966; Shklyar, 2011; Su et al., 2014]. Figure 6 presents the calculated damp-
ing rates using the Waves in Homogeneous Anisotropic Magnetized Plasma (WHAMP) code [Ronnmark, 1982].
The background magnetic field is specified as B = 61 nT (i.e., the equatorial magnetic strength at L = 8 in the
typical dipole field), and the wave frequency is selected as f = 200 Hz (i.e., the peak frequency of hiss spec-
trum in Figure 2). It is found that the damping rate increased by a factor of∼3–5 for waves with normal angles
𝜓 > 20∘. As illustrated in the previous ray-tracing simulations [Bortnik et al., 2011; Chen et al., 2012a], the cho-
rus rays that can access the plasmasphere usually have wave normal angles 𝜓 ≈ 40∘–70∘. The intensities of
these chorus rays with 𝜓 ≈ 40∘–70∘ could be reduced to much less than 1% within 1 s after the shock. Such
enhanced Landau damping might be responsible for quenching plasmaspheric hiss [Bortnik et al., 2007].

Figure 6. Normal-angle 𝜓-dependent damping rate 𝛾 for the f = 200 Hz chorus waves at L = 8.0 during the preshock/
postshock times. Note that the dashed horizontal lines denote the damping rates satisfying the relations e−𝛾 = 1%
(magenta), 5% (blue), and 10% (cyan).
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It should be mentioned that the WHAMP code fully includes the Landau damping and cyclotron amplification
processes. For the present simulations, the preshock PSD with the weak anisotropy did not allow the effective
amplification of waves at any normal angles, while the postshock PSD with the moderate anisotropy could
amplify waves at the normal angles 𝜓 < 10∘ (not shown).

3.4. Refraction of Chorus Into the Plasmasphere
The refraction is considered to be controlled by the cold electron distribution. Chen et al. [2012b] have demon-
strated that the location or width of the plasmapause do not affect the peak hiss intensity significantly. Hence,
the potential change of plasmapause by the shock was difficult to explain the prompt disappearance of plas-
maspheric hiss. However, Chen et al. [2009] have suggested that the location and width of the plasmaspheric
plume control the access of chorus waves into the duskside plasmasphere. Within several hours after the
shock, the contribution of the evolving plasmaspheric plume to the hiss disappearance may need further
investigation.

3.5. Amplification of Hiss Within the Plasmasphere
The amplification rate of hiss waves depends on the suprathermal/energetic electron distribution [Chen et al.,
2012c]. As observed by the RBSP satellites (Figures 3a and 4a), the suprathermal/energetic electron fluxes
exhibited significant enhancement in the outer plasmasphere, promoting the amplification of injected chorus
[Chen et al., 2012c] or thermal noise [Thorne et al., 1979]. Hence, the shock-induced change in this stage was
unable to quench plasmaspheric hiss.

4. Conclusions

Plasmaspheric hiss plays an important role in radiation belt dynamics during both quiet and storm times. Its
global spatiotemporal distributions have been statistically investigated [Meredith et al., 2004, 2007; Golden
et al., 2012; Agapitov et al., 2013; Tsurutani et al., 2015]. In a statistical sense, strong substorms or solar wind with
high ram pressure can intensify the plasmaspheric hiss waves. Here we report an interesting counterexam-
ple provided by the RBSP satellites. Following the interplanetary shock on 8 October 2013, a strong substorm
(with maximum AE ≈ 1400 nT) occurred, but simultaneously the plasmaspheric hiss waves disappeared
for about 5 h. These observations clearly illustrate the significant and complex variability of plasmaspheric
hiss waves.

The generation mechanism for plasmaspheric hiss is still under debate. The origination of plasmaspheric hiss
from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this special event. The
interplanetary shock produced the prompt acceleration of electrons over a wide range of energies and pitch
angles. Landau damping in the plasmatrough, controlled by the suprathermal (0.1–10 keV) electron fluxes,
might have become too strong to allow the access of chorus into plasmasphere. As suggested in previous
works [Bortnik et al., 2008, 2009], the interruption of energy injection by chorus could cause the disappear-
ance of plasmaspheric hiss. Moreover, the shock and the subsequent coronal mass ejection continuously
compressed the magnetosphere and largely removed the source electrons for chorus through the magne-
topause shadowing process, which could contribute significantly to the several-hours-long disappearance of
plasmaspheric hiss. We reiterate that the current explanations are obtained based on the inferred variations
in the plasmatrough and magnetopause. The RBSP satellites, as well as the THEMIS or the Cluster satellites,
were not in the appropriate positions to measure the dayside plasmatrough/magnetopause properties during
the time period of interest. Future global magnetospheric simulations are required to examine the proposed
explanations.

The influence of the solar wind on the inner magnetosphere has long been investigated in the space physics
community [e.g., Baker et al., 1983, 1998; Gonzalez et al., 1989; Reeves et al., 1998; Wang et al., 2010]. Inter-
planetary shocks have been reported to trigger the substorms [Heppner, 1955], storms [Gonzalez et al., 1994],
auroral brightening [Zhou and Tsurutani, 1999; Meurant et al., 2004; Su et al., 2011c], magnetospheric particle
energization [e.g., Blake et al., 1992; Hudson et al., 1997; Zong et al., 2009], and chorus intensification [Fu et al.,
2012]. The current observations exhibit a potentially new consequence of interplanetary shock on the inner
magnetosphere, the disappearance of plasmaspheric hiss.
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