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[1] We performed a diagnostic analysis of AVHRR-NDVI
and gridded, temperature data for the deciduous forests of
the eastern U.S., calibrating temperature accumulation
model with satellite data for 1982–1993. The model
predicts interannual variability in onset date based upon
year-to-year changes in springtime temperature. RMS error
over the period ranges from 6.9 days in the northern portion
of the domain to 10.7 days in the south. The analysis
revealed a relationship between temperature accumulation
and satellite derived onset date (rank correlation = 0.31–
0.62). The required temperature accumulation threshold can
be expressed as a function of mean temperature (R2 of 0.90)
to facilitate predictive analysis of phenological onset, or
when remote sensing data are unavailable. INDEXTERMS:

1640 Global Change: Remote sensing; 1615 Global Change:

Biogeochemical processes (4805); 9350 Information Related to

Geographic Region: North America; KEYWORDS: interannual

NDVI, phenology, ecosystem models. Citation: Jenkins, J. P.,

B. H. Braswell, S. E. Frolking, and J. D. Aber, Detecting and

predicting spatial and interannual patterns of temperate forest

springtime penology in the eastern U.S., Geophys. Res. Lett.,

29(24), 2201, doi:10.1029/2001GL014008, 2002.

1. Introduction

[2] The timing of seasonal cycles of vegetation activity,
or phenology, is important for predicting ecosystem carbon
fluxes. However, our knowledge of the subject comes
primarily from observation of the externally visible phases
of plant development instead of from a mechanistic under-
standing of the biochemical controls within plants [Larcher,
1995]. Variability in growing season length is likely to have
a direct impact on the ecosystem carbon balance [Black et
al., 2000; Frolking, 1997; Goulden et al., 1996; White et
al., 1999] and energy balance [Fitzjarrald et al., 2001].
Vegetation phenophases are sensitive to certain environ-
mental controls [Kemp, 1983; Larcher, 1995] and in tem-
perate systems, onset is highly correlated with temperature
[Hänninen, 1994].
[3] Since deciduous canopy development is linked to

ecosystem level fluxes of carbon, nutrients and water, its
timing is critical and must be prescribed in models [Aber et
al., 1995; McGuire et al., 1992; Parton et al., 1988;
Running and Hunt Jr., 1993]. The availability of multi-year
in situ data from native vegetation is limited, and spatially
explicit observations are very rare [Schwartz, 1998]. Many
extant datasets, like the comprehensive USDA-derived lilac
phenology dataset [Schwartz, 1997], are specific to a single
canopy or an understory species and are difficult to relate to

whole-ecosystem behavior. There also is no a priori link
between reported phenophases and the simplified represen-
tation of onset in the models.
[4] Reflectance-based remote sensing products like

NDVI have been used to specify ecosystem growing season
dynamics [Reed et al., 1994; Schwartz, 1997; White et al.,
1997]. NAVI is correlated with the column integral of
chlorophyll in the canopy [Myneni and Williams, 1994],
though the strength of this relationship is highly variable for
different ecosystems [Baret and Guyot, 1991]. Though
NDVI should be an indicator of the ‘‘seasonal wave’’ of
vegetation activity, canopy reflectance depends on a variety
of factors including variability in atmospheric conditions
(eg. the presence of water vapor and aerosols), and obser-
vation conditions (eg. solar and viewing geometry, spatial
sampling and temporal recompositing) [Gutman, 1999; Los
et al., 2000; Privette et al., 1995]. While forest NDVI has a
high dynamic range for spatial and seasonal patterns,
interannual changes in the signal are at least an order of
magnitude smaller and thus more difficult to detect.
[5] We develop a relationship using the remote sensing

data which links vegetation seasonality to mean climatic
conditions and we reparameterize this algorithm as a function
of local temperature, which is appropriate for prognostic
modeling. We also evaluate the ability of the optical remote
sensing to capture spatial and interannual variability in
vegetation seasonality within the studied domain.

2. Methods

2.1. Domain Selection

[6] We examined the seasonality and maximum green-
ness of the dominant vegetation in all 0.5� grid cells in the
contiguous U. S. (Figure 1). Agriculture-dominated cells
were identified with VEMAP land cover classification data
[Kittel et al., 1995; VEMAP Members, 1995] and excluded
from the analysis. The VEMAP classes which comprise the
template forests of the eastern U.S. exhibit moderate to high
greenness and some degree of seasonality, providing a
measure of consistency between the remote sensing and
the land cover types. We selected these vegetation classes
for the analysis domain, forming a set of 653 grid cells.

2.2. Climatology

[7] We extracted monthly mean temperature from the
VEMAP Phase 2 climate data set [Kittel et al., 1997] for the
years 1982–1993. VEMAP temperature data are based on
an interpolation of monthly observations at more than 1000
station locations. Daily temperature values were obtained
using a spline interpolation of the monthly values.
[8] We used the growing degree day (GDD) sum, an

integration of daily mean temperature above 0�C from Jan.
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1 to the predicted initial day of the growing season, as a
measure of energy accumulation required for onset. Some
studies have proposed variations to the GDD approach to fit
site or vegetation specific measurements such as using a
threshold of 5�C [von Wuehlisch et al., 1995] [Hänninen,
1994] or including a chilling requirement [Heide, 1993;
Hunter and Lechowicz, 1992]. However, for simplicity and
because our study domain spans a broad climate and species
range, we chose a simple temperature accumulation trigger
with a threshold of 0�C.

2.3. Remote Sensing

[9] Twelve complete years (1982–1993) of available
NDVI from the pathfinder AVHRR Land (PAL) composite
date set were selected because of the extent of their spatial
and temporal coverage, and for their high processing stand-
ars, which includes partial atmospheric correction [Agbu
and James, 1994]. Data were recomposed from 10-day to
monthly values using the maximum of the 3 observations
per month and aggregated from 8 km to 0.5� by averaging.
Re-gridded 0.5� cells containing fewer than 50% valid 8-
km samples were excluded from the study domain reducing
the total number of cells from 653 to 530.

2.4. Algorithm Description

[10] We selected a common NDVI threshold of 0.45 for
the entire domain. For each grid cell and for each year, we
identified onset as the day the NDVI threshold was crossed.
A 12-year mean GDD sum was then calculated for each
cell, thus defining onset as a climatological function.

2.5. Interannual Variability

[11] We performed a cross validation test of the algo-
rithm by computing mean GDD sums for each grid cell,
excluding each year in turn. We then used the mean GDD
sums to obtain 12 predicted onset values, which we
compared to observed onsets extracted directly from the
remote sensing data for each respective year. This explicitly
tests the relationship between interannual variability in the
NDVI-based phenology and observed temperature. We

examined the rank correlation in addition to RMS error
because we were interested in the model’s ability to identify
the correct year-to-year ordering of onset dates.

2.6. Comparison to Ground Observation

[12] We compared satellite observed onset dates to
ground measured phenological data at the Hubbard Brook
Experimental Forest in New Hampshire, USA [Martin,
1993] in order to ascertain what level of actual leaf
development correlated to the 0.45 NDVI threshold. In this
data, weekly developmental observations were recorded
each spring for the dominant forest species, using an integer
scale (phenologic stage) ranging from 0 (no foliage) to 4
(full canopy). For 1989–93, the years coincident with
available NDVI, we compared the ground based phenolog-
ical data to NDVI-based onset dates of the 0.5� grid cell
containing Hubbard Brook. For each phenologic stage in
the ground data set, we averaged observations of all species
types. Using phenophase thresholds of 0.1 to 1.5, we
extracted a single onset day for each year from the ground
data and compared them with the NDVI-based onsets.

3. Results

[13] Mean GDD sum at phenologic onset generally
increases from north to south across the domain
(Figure 2a), predicted onset day decreases from north to
south (Figure 2b). The required temperature accumulation
ranges from an average of 100�C-days in the north to
1000�C-days in the south. Onset predictions range from

Figure 1. The greeness and degree of seasonality of a 12-
year NDVI timeseries is used to identify the three VEMAP
land cover classes: cool temperate forest, warm temperate
forest and temperate deciduous forest, which are appropriate
for the study.

Figure 2. (a) 12-year mean GDD sum (accumulated
temperature at the NDVI observed onset day). (b) Modeled
spring phenological onset day using the calculated mean
GDD sum and mean temperature. (c) RMS error between
the 12 satellite observed onset days and the cross validation
predicted onset days. (d) Rank correlation quantifies the
relative ordering of the 12 cross validation predicted onset
values with respect to the 12 satellite observed values. High
rank correlation in the north indicates that interannual
variation in the seasonal NDVI vegetation signal can be
perceptible above the interannual noise in the data.
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approximately yearday 85 (Mar. 25) in the southern class to
yearday 125 (May 5) in the north. This relationship was
further generalized by regressing mean GDD sum against
simple climatological variables. A regression against aver-
age July temperature (Figure 3) provided the best fit.
[14] In general, the ability of the model to predict each

year’s satellite observed onset decreases from north to south
(Table 1, Figure 2c) owing, in part, to NDVI signal noise in
the beginning of the year. Similarly, rank correlation, was
highest in the northern vegetation class (Table 1, Figure 2d),
reflecting the best ordering of onset predictions to observa-
tions over the 12 year period.
[15] It is not clear why year-to-year variability in GDD

sum and NDVI threshold crossing are strongly coupled only
in the northern forests. We ruled out snow effects because of
the lateness of the estimated onset dates. Southern phenol-
ogy may be driven more strongly by other environmental
factors, or may be influenced by a higher degree of sub-0.5�
heterogeneity.

3.1. Ground Validation

[16] Using a range of phenophase thresholds at Hubbard
Brook, we found that a low threshold of 0.3 phenologic
stage units yielded both the strongest R2 and rank correla-
tion with respect to the remote sensing, (Figure 4) suggest-
ing that NDVI must be sensitive to the early stages of
vegetation onset.

4. Discussion

[17] Diagnostic analysis of AVHRR-NDVI and temper-
ature time series data resulted in a simple model of vegeta-
tion seasonality. In contrast to earlier research on modeling
phenology [White et al., 1999, 1997] we expanded the

spatial and temporal extent of the remote sensing data used
to calibrate the phenology model and explore its application
on interannual time scales. We also applied a constant NDVI
threshold without transforming the data because all temper-
ate forest pixels had a sufficiently high maximum NDVI to
reach a common threshold in the spring. Moreover, we found
that noise in the NDVI signal, particularly during the winter
was amplified when NDVI was scaled. We chose the 0.45
threshold because it is higher than the extreme wintertime
values and it roughly corresponds to the steepest ascent of
the NDVI curve, but our results were not sensitive to its
value from 0.4 to 0.6. If other land cover types were
included, it might become necessary to prescribe different
thresholds. Because the spatial variability in the remote
sensing is large in comparison to temporal variability, Botta
et al., [2000] computed an average of all years for their
analysis of spatial patterns. Since our primary interest was
searching for year-to-year structure in NDVI, we kept all
available years of AVHRR as independent data.
[18] The observed phenologic threshold at Hubbard

Brook corresponding to the NDVI calculated onset is
relatively low (0.3 in a 0–4 range), indicating that, for this
pixel, satellite observations show substantial greening
before bud break occurs in the dominant tree species.
Vegetation diversity within the 0.5� pixel may be partially
responsible for this. Snow melt and early growth of under-
story vegetation at the site would increase pixel NDVI and
require a moderately high NDVI threshold to indicate initial
growth of the canopy. Also, Hubbard Brook is located at a
high elevation relative to the rest of the pixel. Temperature
gradients cause vegetation growth to begin earlier at low
elevations, so the 0.5� cell will already be greening up by
the time onset of leaf development in the canopy trees at the
Hubbard Brook site occurs.
[19] The existence of non-vegetation effects in AVHRR

derived NDVI has been documented [Los et al., 2000;
Gutman, 1999; Cihlar et al., 1998] but is difficult to
address. Furthermore, interannual NDVI has rarely been
evaluated with independent observations [Hagen et al., in
press], except for ENSO studies in the tropics [Asner et al.,
2000; Myneni et al., 1996] in which a significant atmos-
pheric contribution to the expected between precipitation-

Figure 3. Spatially generalized form of the phenology
prediction algorithm using mean July temperature.

Table 1. Model Statistics by Forest Vegetation Class (± Standard

Deviation)

Number
of pixels

RMS error
(days)

Rank
correlation

Cool temperate mixed 141 6.91 ± 1.88 0.62 ± 0.14
Temperate decidious 185 9.42 ± 2.45 0.41 ± 0.20
Warm temperate/subtropical mixed 204 10.71 ± 3.74 0.31 ± 0.19
Whole domain 530 9.25 ± 3.27 0.43 ± 0.22

Figure 4. Satellite observed onset dates show a moderate
R
2
correlation of 0.62 and a near perfect rank correlation of

0.9 with respect to the ground measured values.
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NDVI relationship cannot be ruled out because of water
vapor variability. However, our analysis reveals a structure
in the interannual NDVI signal that provides a representa-
tion of year-to-year changes in seasonality, particularly in
the northern portion of the domain where NDVI seasonality
is most pronounced. While we do not assume that NDVI is
directly representative of canopy conditions, we do assume
that correlations between NDVI threshold crossing dates
and GDD sum must be mediated by a vegetation response.
Drawing conclusions about actual long-term trends in
NDVI and, by corollary, vegetation activity from the exist-
ing satellite record is tenuous [Fitzjarrald et al., 2001;
Schwartz, 1998] and we show only the emergence of a
weak interannual signal. While the new generation of
remote sensing instruments (eg. MODIS, VGT) will pro-
vide an improved means of detecting spatial and temporal
variability in vegetation characteristics like phenology,
AVHRR data currently provides the longest global vegeta-
tion time series.
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