
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Physics Scholarship Physics 

3-2014 

Event-specific chorus wave and electron seed population models Event-specific chorus wave and electron seed population models 

in DREAM3D using the Van Allen Probes in DREAM3D using the Van Allen Probes 

Weichao Tu 
Los Alamos National Laboratory 

G. S. Cunningham 
Los Alamos National Laboratory 

Y. Chen 
Los Alamos National Laboratory 

S. K. Morley 
Los Alamos National Laboratory 

Geoffrey Reeves 
Los Alamos National Laboratory 

See next page for additional authors 

Follow this and additional works at: https://scholars.unh.edu/physics_facpub 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Tu, W., G. S. Cunningham, Y. Chen, S. K. Morley, G. D. Reeves, J. B. Blake, D. N. Baker, and H. Spence 
(2014), Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen 
Probes, Geophys. Res. Lett.,41, 1359–1366, doi:10.1002/2013GL058819 

This Article is brought to you for free and open access by the Physics at University of New Hampshire Scholars' 
Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University 
of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/physics_facpub
https://scholars.unh.edu/physics
https://scholars.unh.edu/physics_facpub?utm_source=scholars.unh.edu%2Fphysics_facpub%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholars.unh.edu%2Fphysics_facpub%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


Authors Authors 
Weichao Tu, G. S. Cunningham, Y. Chen, S. K. Morley, Geoffrey Reeves, J. B. Blake, D. N. Baker, and Harlan 
E. Spence 

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/
physics_facpub/327 

https://scholars.unh.edu/physics_facpub/327
https://scholars.unh.edu/physics_facpub/327


Event-specific chorus wave and electron
seed population models in DREAM3D
using the Van Allen Probes
Weichao Tu1, G. S. Cunningham1, Y. Chen1, S. K. Morley1, G. D. Reeves1, J. B. Blake2,
D. N. Baker3, and H. Spence4

1Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2Space Sciences
Department, The Aerospace Corporation, Los Angeles, California, USA, 3Laboratory for Atmospheric and Space Physics,
University of Colorado Boulder, Boulder, Colorado, USA, 4Institute for the Study of Earth, Oceans, and Space, University of
New Hampshire, Durham, New Hampshire, USA

Abstract The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout
and strong enhancement of MeV electrons during the October 2012 “double-dip” storm. We show that in
order to explain the very different behavior in the two “dips,” diffusion in all three dimensions (energy, pitch
angle, and L*) coupled with data-driven, event-specific inputs, and boundary conditions is required.
Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific
chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics.
In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward
radial diffusion of a seed population, perform poorly. The results illustrate the utility of the high resolution,
comprehensive set of Van Allen Probes’measurements in studying the balance between source and loss in
the radiation belt, a principal goal of the mission.

1. Introduction

The relativistic electron fluxes in Earth’s outer radiation belt are observed to vary greatly during geomagnetic
storms [Reeves et al., 2003; X. Li et al., 2013]. The successful launch of the Van Allen Probes mission creates an
unprecedented opportunity to observe radiation belt dynamics in great detail. During the October 2012
“double-dip” storm event (Figure 1f), the phase space density (PSD) of MeV electrons (shown in Figure 1b)
exhibits very different behavior in the two dips: wiped out during the firstDst dip and then increased by 3 orders of
magnitude on the time scale of hours during the second Dst dip. Given that the variability of radiation belt
electrons is a delicate balance between various source and loss processes [Selesnick and Blake, 2000; Reeves et al.,
2003; Tu et al., 2009], understanding the fast dropout and buildup of radiation belt electrons in this event is
challenging even with the high-quality particle and wave data from the Van Allen Probes. Physical models are
required that can take the highly resolved, comprehensive measurements as inputs.

The fast dropout of radiation belt electrons can be caused by outward radial diffusion combined with
magnetopause shadowing [Reeves et al., 1998; Morley et al., 2010; Shprits et al., 2012; Turner et al., 2012] and/or
enhanced electron precipitation into the atmosphere [Selesnick, 2006; Tu et al., 2010]. The acceleration of radiation
belt electrons can be due to inward radial diffusion [Hudson et al., 2000; Elkington et al., 2003] and/or local heating
by Very Low Frequency (VLF) waves, such as whistler mode chorus [Horne and Thorne, 1998; Horne et al., 2005]. To
simulate these concurrent processes, a 3-D model which includes diffusion in all three dimensions (energy, pitch
angle, and L* shell) is needed. Recent data have shown that the electron PSD can peak at L* regions (L* is the third
adiabatic invariant [Roederer, 1970]) inside geosynchronous orbit, leading to a greater emphasis on local heating as
the acceleration mechanism for radiation belt electrons [Chen et al., 2007]. For the October 2012 event shown in
Figure 1, a detailed analysis of the PSD profiles versus L* using Van Allen Probes data showed strong evidence of
local heating during the second Dst dip [Reeves et al., 2013]. Furthermore, a 2-D simulation of the acceleration by
chorus waves that reproduces the energy spectrum and pitch angle distributions observed at one L shell has also
been performed [Thorne et al., 2013]. In this paper, we complement those recent results by demonstrating that the
location of the PSD peak in L is reproduced by DREAM3D, as is the breadth of the distribution in L, and the
qualitative features seen during both the first and second Dst dips.
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2. DREAM3D Simulations

The DREAM3D diffusionmodel is based on a simplified version of the Fokker-Planck equation that ignores the
cross terms (DαL, DpL) between the drift shell, L*, and the equatorial pitch angle, α, and momentum, p [Schulz
and Lanzerotti, 1974]:
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Themodel can be decoupled into a set of 1-D radial diffusion equations at fixed μ and K (first and second adiabatic
invariants) and a set of 2-D pitch angle/momentum diffusion equations at fixed L* that operate on the PSD as a
function of (α, p). Specification of the diffusion coefficients is required to solve the equation. The radial diffusion
coefficient, DLL, is a function of Kp index from Brautigam and Albert [2000] (for the magnetic component) and
Brautigam et al. [2005] (for the electric component). The pitch angle, momentum, andmixed diffusion coefficients
(Dαα, Dpp, and Dαp) are calculated following the method in Glauert and Horne [2005], using the wave normal angle
distributions constructed from statistical results (Li et al. [2011] for chorus waves and Agapitov et al. [2013] for hiss),
and the same statistical plasma density models as used in Tu et al. [2013]. Global wave intensity distributions in
magnetic latitude (MLAT), magnetic local time (MLT), and L are required for the calculation. The computational
volume of the 3-D diffusion model requires boundary conditions on six surfaces. The most important boundary
conditions are the outer boundary condition at Lmax and the low-energy boundary at Emin = 100 keV (which
we call the electron seed population). More details on the standard setup of the DREAM3D model can be
found in Tu et al. [2013].

Oct 6 Oct 7 Oct 8 Oct 9
2012

Oct 10 Oct 11

(f) Dst (nT) 

(a) LCDS (TS04)

(b) PSD data

(c) RD only

(d) w/o realistic seed electrons

(e) w/ realistic seed electrons

L

Figure 1. Electron PSDdata (in units of (c/MeV/cm)
3
) and simulation results at μ=1279MeV/G and K=0.115G

1/2
RE for theOctober 2012 storm,with

(a) last closed drift shell calculated using TS04 model; (b) PSD data from Van Allen Probes; (c–e) model results with “RD only,” “RD+Hiss+Chorus”
without realistic electron seed population, and “RD+Hiss+Chorus” with realistic electron seed population, respectively; and (f) Dst index.
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Figure 1b shows the electron PSD data (in units of (c/MeV/cm)3) calculated from the electron fluxes measured
by the MagEIS (Magnetic Electron Ion Spectrometer) and REPT (Relativistic Electron-Proton Telescope)
instruments aboard the two Van Allen Probes during the October 2012 event (6–11 October). They are for
μ= 1279MeV/G and K= 0.115G1/2RE (corresponding to approximately 2.0MeV electrons with equatorial
pitch angles of about 52° at L* = 4 in a dipole). The PSD is evaluated using the Tsyganenko 04 storm time
model (TS04) [Tsyganenko and Sitnov, 2005]. To simulate the electron dropout and buildup during the
October 2012 event as shown in Figure 1b, three new modifications to the DREAM3D model have been
implemented, all driven by event-specific conditions.

2.1. “Open” Boundary at Lmax = 11 Combined With Short Electron Lifetimes Outside the Solar
Wind-Driven Last Closed Drift Shell

The October 2012 storm was caused by a solar coronal mass ejection which significantly compressed the
magnetopause and intensified the ring current around the Earth. The last closed drift shell (LCDS) of 90°
equatorial pitch angle electrons in L* is shown in Figure 1a, which is calculated under the TS04 model driven
by event-specific solar wind conditions. It is compressed to inside L* = 6 during both Dst dips, implying the
possibility of strong magnetopause shadowing and outward radial diffusion of MeV electrons. Van Allen
Probes are inside the LCDS during this event. In order to model outward radial diffusion of electrons to the
compressed magnetopause and resolve its contribution to the observed fast electron dropout, we set the
outer boundary at Lmax = 11 (with ∂f/∂L=0 at Lmax = 11), which is always greater than the LCDS during the
event. Electrons outside the solar wind-driven LCDS (Figure 1a) are assumed to have a lifetime on the order of
their drift period that is energy dependent. High-energy electrons with short drift periods will be lost quickly,
causing a sharp gradient in PSD at the LCDS. The model results with radial diffusion only (Dαα, Dpp, and Dαp

terms turned off) are shown in Figure 1c, for which the model initial condition (at 00 UT on 6 October) is
derived from the Van Allen Probes PSD data. The timing and level of the electron dropout is reproduced by the
model, proving the importance of outward radial diffusion to the observed electron dropout (consistent with the
results in Hudson et al. [2014]). However, the simulated loss is not quite as deep in L* as in the observations, which
will be discussed in detail in section 3. The results in Figures 1d and 1e will be discussed below.

2.2. Event-Specific Chorus Waves

Typically, for the calculation of the pitch angle/momentum diffusion coefficients in the 3-D diffusion codes,
empirical wave distributions derived from a statistical wave database are used [Albert et al., 2009; Tu et al.,
2013]. For example, the global intensity distributions of chorus waves used in Tu et al. [2013] are statistically
derived from the CRRES wave data, which are then binned in AE* (the mean value of AE over the previous 1 h)
[Meredith et al., 2003, 2004]. Based on this statistical model, the variation of the MLT-averaged chorus wave
amplitude (actually the square root of the MLT-averaged wave intensity) near the equator is plotted in
Figure 2b for the October 2012 event. Even though chorus wave amplitude varies with local time [Meredith
et al., 2003], only MLT-averaged wave amplitude is used in our model since DREAM3D is drift-averaged which
includes the effects of pitch angle/momentum diffusion averaged over electrons’ drifts. To include the MLT-
dependence of the scattering processes, a 4-D model which also resolves the drift-phase dependence of
electron distribution is required. Since the empirical model is divided and averaged into three AE* levels
(<100, 100–300, and >300 nT, as marked in Figure 2c), the MLT-averaged wave amplitude in Figure 2b
changes stepwise in time. The AE index reaches ~1000 nT during the event, much higher than the cutoff of
the highest AE* bin in the empirical model, calling into question the validity of the highly averaged statistical
wave model during this active period. In situ observations of the chorus wave amplitude during the event are
provided by the Van Allen Probes EMFISIS (Electric and Magnetic Field Instrument Suite and Integrated
Science) instrument [Kletzing et al., 2013] (shown in Figure 2d). Strong chorus waves with amplitude greater
than 100 nT are observed during both Dst dips. Even though high-quality wave measurements can be
provided by the Van Allen Probes, they provide limited coverage in MLT and L. An event-specific wave model
is needed that can provide the global distribution of chorus waves. Such a model has been developed by one
of our coauthors, Yue Chen [Chen et al., 2014]. Since chorus waves are thought to be excited by substorm
injected low-energy electrons, the model uses the low-energy precipitating electron flux (30–100 keV)
measured by multiple NOAA satellites (covering a broad range of L and MLT) at low altitude as the proxy for
global distribution of the near-equatorial chorus waves. Specifically, the precipitating electron flux measured
at low altitude is fitted to the equatorial wave measurements made by EMFISIS to infer the chorus wave
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amplitude for this event. Figure 2e shows the chorus wave amplitudes calculated from the proxy at the Van Allen
Probes’ orbits, which exhibit striking resemblance to the data (comparing to Figure 2d). An alternative and more
theoretical approach to obtaining global distribution of chorus waves has been published to use the ratio of
precipitating to trapped electrons observed by NOAA satellites to derive the wave intensity [W. Li et al., 2013]. That
method has also been applied to the same event and validated against EMFISIS data. Future work is planned to
compare thewave distributions derived from the twomethods inmore detail. Herewe find that theMLT-averaged
chorus wave amplitudes calculated from the proxy (shown in Figure 2a) can be >10 times higher than the
statistical model (Figure 2b), leading to diffusion coefficients that are 100 times larger.

In order to simulate the strong enhancement of MeV electrons during the October 2012 event, we use the
wave proxy to produce the event-specific chorus wave amplitude as a function of MLT, L, and time. Since the
wave distribution in magnetic latitude (MLAT) cannot be resolved by the proxy, the MLAT dependence of
chorus waves from the statistical model is used. The simulation results that include wave-particle interactions
from this event-specific chorus wave model are shown in Figure 1d, which include radial diffusion and pitch
angle/momentum diffusion from chorus and hiss. The hiss wave distribution is from the statistical model
used in Tu et al. [2013] (also based on CRRES wave data). The results show some PSD enhancement toward
the end of 8 October that is not present in the observations, but this enhancement is far less than the major
enhancement observed on 9 October (Figure 1b). Local heating of radiation belt electrons to MeV energies
needs not only strong waves but also a sufficient seed population to be heated. The seed population will be
investigated in the next section.

2.3. Realistic Electron Seed Populations

In our previous work [Tu et al., 2013] and the run in Figure 1d, the electron seed population, or low-energy
boundary at Emin = 100 keV, is first set by the initial condition. For each time step the PSD at 100 keV is
updated by the radial diffusion code but then held constant over the pitch angle/momentum diffusion step.
Figure 3b shows the 100 keV electron flux versus time (black curve) from the model run in Figure 1d for
electrons at L* = 4 and with equatorial pitch angle αeq = 50°. The fluxes at higher energies are shown in
different colors. These results show that the 100 s keV electrons are lost early on 8 October, and again early on
9 October, due to outward radial diffusion in the same manner as the MeV electrons. The absence of a
replenishing seed population explains why the model does not produce enhancements of the MeV electrons
even with strong chorus waves from the event-specific model (section 2.2). However, the dynamics of
100 s keV electrons produced by this model (Figure 3b) is not realistic since the dynamics of low-energy
electrons are mainly controlled by convection and injection rather than diffusion [Runov et al., 2012;
Ganushkina et al., 2013]. The real dynamics of the seed population are available directly from the Van Allen
Probes data. The 100 keV to 2.5MeV electron fluxes at L* = 4 and αeq = 50° measured by MagEIS and REPT are

(c) AE (nT)

(a) wave proxy

(b) CRRES statistical model
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Figure 2. (a–c) Time and L distributions of the MLT-averaged chorus wave amplitude derived from the wave proxy in Figure 2a and the empirical model in Figure 2b, with the AE index
plotted in Figure 2c. (d–f ) Comparison of the chorus wave amplitude measured by the two Van Allen Probes in Figure 2d and derived from the proxy at Van Allen Probes’ orbits in Figure 2e.

Geophysical Research Letters 10.1002/2013GL058819

TU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1362



plotted in Figure 3a. The 1–2.5MeV electron fluxes are observed to decrease early on 8 October then show an
increase by the end of 8 October. However, the 100–500 keV electrons do not decrease early on 8 October but
rather show an increase at this time, about a day earlier than the increase of MeV electrons, probably due to
strong convection and injection from the plasma sheet [Kress et al., 2014]. This physics is not captured in our
previous simulations.

In order to implement the realistic dynamics of the electron seed population in our model, the event-specific
100 keV electron flux observed by Van Allen Probes is used as the Emin boundary condition in the DREAM3D
model, the third modification to the code made to model this event. With this data-driven Emin boundary
condition, the new simulation results with radial diffusion and pitch angle/momentum diffusion from chorus
and hiss are shown in Figure 3c for electron flux and in Figure 1e for electron PSD. Now themodel reproduces
a strong enhancement of MeV electrons, comparable to the data, with electron PSD peaked at L* ~ 4, in the
same location as the data. The simulation results demonstrate that both event-specific strong chorus waves
and an accurate electron seed population are necessary for reproducing the remarkable enhancement of
MeV electrons during the October 2012 event.

3. Discussion

Section 2 demonstrates the value of three different event-specific inputs and their profound effect on the
DREAM3D model results: (1) specification of the time-dependent magnetopause/last closed drift shell based
on solar wind conditions; (2) specification of the distribution of equatorial chorus wave intensity as a function
of L, MLT, and time using LEO electron precipitation measurements; and (3) time-dependent measurements
of the dynamic population of seed electrons measured in situ by the Van Allen Probes.

A major goal of the Living With a Star program strategy is to make the measurements required for a
predictive understanding of the processes that drive severe space weather—rather than relying on statistical

Oct 6 Oct 7 Oct 8 Oct 9
2012

Oct 10 Oct 11

(b) Model flux:

(a) Van Allen Probes 
flux data

L=4, 

L=4, 

L=4, 

(c) ‘RD+Hiss+Chorus’ w/ realistic seed electrons

‘RD+Hiss+Chorus’ w/o realistic seed electrons

Figure 3. Observed (Figure 3a) and simulated (Figure 3b–c)variations of electron flux during the October 2012 storm, at L=4 and αeq=50°, and for
electrons at different energies (0.1 to 2.5MeV, shown in different colors). Themodel results are from the “RD+Hiss+Chorus” runs (b) without realistic
electron seed population (same run with Figure 1d) and (c) with realistic electron seed population (same run with Figure 1e), respectively.
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distributions and geomagnetic indices. Here we look in more detail at the quantitative effects of this
improved methodology. In Figure 4 we plot radial profiles of PSD observed by the two Van Allen Probes and
calculated from different DREAM runs. The phase space densities plotted are for μ= 1279MeV/G and
K = 0.115G1/2RE and averaged over 4h intervals (if both satellites measure the same L* within each 4 h
“snapshot,” we average the data). The PSD data (Figure 4a) shows the fast dropout of radiation belt
electrons from 06 to 18 UT on 8 October and the strong enhancement from 00 UT to 12 UT on 9 October.
Figure 4b shows the PSD versus L* from the simulation that includes only radial diffusion and loss to the
time-dependent magnetopause. Here we only plot the first four snapshots (06–18 UT). We see that the
model with radial diffusion alone reproduces the electron dropout outside L* = 4, including the internal PSD
peak observed in the data. This is clear evidence of electron losses due to outward radial diffusion
combined with magnetopause shadowing [Turner et al., 2012]. However, we find that the simulated loss is
not as significant as in the data, in particular the large dropout at L*> 4.3 from 06 to 10 UT on 8 October
(snapshots #1–2) and the continuous loss over L* = 3.5–4.5 from 10 to 18 UT on 8 October (snapshots #2–4).
Possible explanations for this difference are that the last closed drift shell calculated using the TS04 model
may not be accurate, or the empirical radial diffusion coefficient applied to the event may be too low, or
other loss mechanisms also contribute, e.g., precipitation to the atmosphere.

The model run that includes local heating from chorus waves (using the global distribution derived from the
proxy) is shown in Figure 4c (with panel order moving clockwise). The results show that local heating by the
strong chorus waves during the first Dst dip overwhelms the electron loss from outward radial diffusion
(Figure 1e). Thus, from 06 to 18 UT on 8 October (snapshots #1–4), the electron PSD inside L* = 4.5 does not
show a decrease, as in the data, but rather shows an early increase. As discussed above, this discrepancy
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(d) RD+Hiss+Chorus
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Figure 4. PSD versus L profiles at different times from the data and simulations at μ= 1279MeV/G and K= 0.115G
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from (a) PSD data as shown in Figure 1b, (b–d) model results with “RD only” (same run with Figure 1c), “RD+Hiss + Chorus” (same run with
Figure 1e), and “RD+Hiss + Chorus” but with chorus only turned on from 18 UT on 8 October, respectively.
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could be explained by loss mechanisms that are not in the model. Whatever the cause, the difference
between the model and the observations prior to 9 October (snapshots #1–4) could affect the DREAM3D
results on 9 October (snapshots #5–9). One way to test this possibility would be to reinitialize the simulation
at 18 UT on 8 October using Van Allen observations. Another (more difficult) test is to include the entire
simulation run but to “turn off” chorus during the observed flux dropout period, i.e., prior to 18 UT on 8
October. The simulation results from this model are shown in Figure 4d, which show that now, the electron
dropouts produced by outward radial diffusion (snapshots #1–4) are retained, as is the fast and large PSD
enhancement by chorus heating during the second Dst dip (snapshots #5–8). We conclude that the dramatic
enhancement during the second Dst dip is explained by local acceleration of the seed population, but to fully
explain the dynamics earlier on 8 October we need either an additional loss mechanism or better
understanding of why the chorus waves are less effective in acceleration. Not only does the model produce
results that are strikingly similar to the observations but also enables more complete understanding of the
dynamics by examining contributions of individual processes to the overall radiation belt response.

4. Conclusions

The results presented here are the first using the DREAM3D diffusion model with event-specific chorus wave
and seed population inputs to simulate a very complex and dynamic radiation belt electrons event observed
by the Van Allen Probes. Without utilizing adjustable parameters, the model results quantitatively reproduce
the strong electron enhancement during the second Dst dip (both the enhancement level and peak L
location) and qualitatively explain the electron dropout during the first Dst dip, which clearly demonstrates
the importance of event-specific inputs and boundary conditions. Utilizing model runs with different inputs
and assumptions we can evaluate the effects of individual processes as well as the delicate interplay of
processes that produces the net changes in the radiation belts. We show that in order to explain the very
different behavior in the two dips, diffusion in all three dimensions (energy, pitch angle, and L* shell) coupled
with realistic, event-specific data inputs and boundary conditions is required. Specifically, a realistic outer
radial boundary (last closed drift shell) is required to accurately capture magnetopause losses, even though
additional loss process is needed to better reproduce the observed dropout; the global distribution of chorus
waves derived from precipitating electrons measured by multiple NOAA satellites is required to accurately
capture the local heating process; and accurate specification of the dynamic seed population from Van Allen
observations is required to reproduce the amplitude of the PSD changes. In contrast, models with reduced
dimensionality, models that derive the seed population from inward radial diffusion, and models that utilize
statistical wave amplitudes parameterized by AE all fail to reproduce one or more of the major features
observed in the October 2012 event.
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