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GEOPHYSICAL RESEARCH LETTERS, VOL. 24, NO.12, PAGES 1459-1462, JUNE 15, 1997 

Initial POLAR MFE observation of substorm signatures in the 
polar magnetosphere 

H. Kawano, •'2 G. Le, • C. T. Russell, • G. Rostoker, 3 T. Mukai, 4 and H. Spence 5 

Abstract. This paper studies substorm influences in the polar 
magnetosphere using data from the POLAR magnetic field ex- 
periment (MFE). The POLAR spacecraft remains in the high al- 
titude polar magnetosphere for extended periods around apogee. 
There it can stay at nearly constant altitude through all phases of 
a substorm, which was not possible on previous missions. We 
report such an event on March 28, 1996. Ground magnetometers 
monitored substorm activity, while the POLAR spacecraft, di- 
rectly over the pole at (-0.8,-0.6,8.5) RE in GSM coordinates, 
observed a corresponding perturbation in the total magnetic field 
strength. The total magnetic field first increased, then recovered 
toward quiet levels, consistent with erosion of magnetic flux 
from the dayside magnetosphere, followed by transport of that 
flux to the magnetotail, and eventual onset of tail reconnection 
and the retum of that magnetic flux to the dayside magneto- 
sphere. 

1. Introduction 

The time sequence of the magnetic field strength, BT, in the 
magnetotail lobe at a distance of about 15 Re and beyond during 
substorms is well known. In the tail lobe over a wide range 
of distances from the Earth, BT increases during the growth 
phase or loading phase, then recovers toward the pre-growth 
phase value during the expansion phase or unloading phase [e.g., 
Fairfield and Ness, 1970; Camidge and Rostoker, 1970; Russell 
and McPherron, 1973; Nishida and Nagayama, 1975]. On the 
other hand, the time sequence of BT in the polar magnetosphere, 
the magnetic field lines of which are connected to those in the 
tail, has not been examined until now due to the unavailability 
of data in this region. 

The ISTP spacecraft POLAR with its long dwell-time in the 
high altitude polar magnetosphere enables for the first time a 
detailed study of the time sequence of the magnetic field strength 
during substorms. In this paper we examine the influence of a 
substorm on the polar magnetosphere and present initial results, 
observed on March 28, 1996, when POLAR was directly above 
the polar cap and close to halfway between the surface of the 
Earth and the expected position of the magnetopause. 

2. Data 

The top panel of Figure 1 shows the interplanetary mag- 
netic field (IMF), in GSM coordinate system, observed with the 
INTERBALL-1 spacecraft during an interval 0000-0800 UT 
on March 28, 1996. The Russian INTERBALL-1 satellite was 
launched on August 3, 1995. The magnetic field experiment 
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onboard INTERBALL-1 is described by, e.g., Klimov et al. 
[ 1997]. The position of the satellite at 0300 UT on March 28, 
1996 was (X, Y,Z)=(14.4,21.6,2.3)(Re) in GSE coordinates and 
the satellite was moving toward the Earth. We roughly estimate 
the propagation time lag from INTERBALL-1 to the Earth to 
be ,--,3 min, by simply dividing the spacecraft Xose position 
by 440 km/s, which is the average solar wind speed observed 
by IMP 8 around (-3,30,19) (Re) in GSM. The figure shows a 
southward turning of the IMF around 0242 UT. IMF Bz reached 
a minimum value ,--, -5 nT at 0301 UT, remained at that level 
(Bz < -4 nT) until ,-.,0413 UT, and then started to recover 
toward zero. The same variation was seen by IMP 8. 
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Figure 1. (top) Shows the magnetic field, in GSM coor- 
dinates, observed with the INTERBALL-1 spacecraft, during 
0000-0800 UT, March 28, 1996. (bottom) Solid lines show the 
magnetic field, in GSM coordinates, observed with the POLAR 
spacecraft. Dotted lines show the model field by Tsyganenko 
[ 1995]. The attached text shows the position of POLAR in GSM 
coordinates. 
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A southward IMF of the strength and duration shown in the 
top panel of Figure 1 could lead to substorm activity, and the 
top panel of Figure 2 supports that expectation. The panel 
shows X components of the ground magnetometer data from 
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the CANOPUS network [e.g., Rostoker et al., 1995], from the 
Geological Survey of Canada (GSC), and from the STEP Polar 
Network run by the University of Tokyo, for the same interval 
as that of Figure 1. Table 1 lists the stations and their locations 
in geomagnetic coordinates, assuming the geomagnetic north 
.pole at 79.34 o in geographic latitude and 288.51 o in geographic 
longitude (based on IGRF 95). Among the listed stations, Poste- 
de-la-Baleine and Iqaluit are operated by the GSC, Schefferville 
is part of the STEP Polar Network, and the others are part of the 
CANOPUS network. The figure shows substorm activity during 
the interval 0300-0700 UT. More detailed discussion, including 
the explanation of the lines A-D in the figure, is given in the 
next section. 

The bottom panel of Figure 1 shows data from the magnetic 
field experiment (MFE) on board the POLAR spacecraft [Rus- 
sell et al., 1995], in the GSM coordinate system (solid lines). 
Dotted lines show the model field, calculated as the summation 
of the IGRF95 and the Tsyganenko 1995 model [Tsyganenko, 
1995]. The satellite was located at (-0.8,-0.6,8.5) (RE) in 
GSM coordinate system at 0300 UT, and was outbound. The 
subsequent apogee passage took place around 0511 UT and the 
apogee position was (-2.7,-0.4,8.5). The figure shows that 
the observed total magnetic field strength BT deviated from 
the model value BTmodd, during the interval from ~0300 UT 
to ~0700 UT. This interval is about the same as the substorm 

interval shown in Figure 2. 

3. Behavior of the Polar Magnetosphere 
The deviation of BT from the model, as shown in the bot- 

tom panel of Figure 1, cannot be mistaken as a spatial pattern, 
because the deviation took place when the spacecraft was near 
apogee: BTmode• was fairly flat when the deviation was observed. 
In addition, preceding and following orbits without substorm ac- 
tivity do not show a similar deviation near apogee (not shown). 
We also note that the dynamic pressure observed by IMP 8 did 
not change much, and that the small change was not much cor- 
related with the change in BT (not shown). The deviation in 
BT therefore must be associated with the concurrent substorm 

activity. Similar to the observations in the magnetotail lobe, 
BT first increased, and then recovered toward the quiet value, 
in the polar magnetosphere. Thus the same explanation could 
be applied to this polar phenomenon: magnetic flux tubes re- 
connected at the dayside magnetopause, under southward IMF, 
are carried downtail, expand the radius of the post-terminator 
magnetosphere and magnetotail, increasing the angle between 
the tail magnetopause and the solar wind flow, and increasing 
the pressure of the solar wind on the boundary. 

The exact timing of the BT increase and decrease, in compar- 
ison with the ground signatures, is of interest, and we examine 
it using Figure 2. The middle panel of Figure 2 shows again 
the magnetic field observed by POLAR, but this time the differ- 
ence between the observation and the model, 6B ---- B - Bmodel, 
is shown, and a new coordinate system is adopted, called the 
field-aligned (FA) coordinate system. Here, the ZF^ unit vector 
kF^ is parallel to Bmode•, the YF^ unit vector iF^ is defined as 
iF^ -' kF^ x r, where r is the position vector of the spacecraft, 
and the XF^ unit vector iF^ satisfies iF^ = iF^ x kF^. Around 
0400 UT, the model magnetic field was southward and sunward 
and the spacecraft was located near the GSM Z axis, (see the 

Figure 2. (top) Shows ground magnetometer X components 
data for the same interval as Figure 1. Superposed half-circles 
show the local dusk (1800 LT), and triangles show the local mid- 
night (0000 LT). (middle) Shows the magnetic field observed at 
POLAR minus the model field, expressed in the "field-aligned 
coordinate system". See text for the definition of the coordinate 
system. (bottom) Shows the data from the GEOTAIL space- 
craft: From top, the plasma ion velocity components in GSM 
coordinates, plasma ion density and temperature. Refer to the 
text for vertical lines A through D. 
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Table 1. Locations of ground magnetometer stations 

Geomagnetic 
Abbreviation Station Name Latitude Longitude 

(deg.) (deg.) 

DAWS Dawson 66.13 269.63 
FSIM Fort Simpson 67.27 290.85 
CONT Contwoyto Lake 72.64 298.32 
FSMI Fort Smith 67.16 303.34 
MCMU Fort McMurray 64.06 306.60 
RABB Rabbit Lake 66.62 315.02 
RANK Rankin Inlet 72.42 327.81 
ESKI Eskimo Point 70.56 326.16 
FCHU Fort Churchill 68.25 327.47 
GILL Gillam 65.86 327.84 
ISLL Island Lake 63.37 328.82 
PBQ Poste-de-la-B aleine 65.85 351.28 
IQA Iqaluit 74.39 4.88 
SFV Schefferville 65.42 6.36 

bottom panel of Figure 1), thus JF^ is directed roughly dawn- 
ward, and iF^ is directed roughly northward. We note 6Bz,FA 
(bottom curve) is almost the same as BT- BTmoael, because B 

important question, because they are not necessarily reflected 
in the magnetic field at POLAR. The difference field, 6BT, at 
POLAR reached a maximum around 0430 UT, and the interval 
0312-0430 UT (78 min) is comparable in length to the interval 
0301-0413 UT (72 min) when the IMF was largely southward 
(see Figure 1). It is therefore likely that the interval 0312- 
0430 UT corresponds to the substorm loading phase. (We note 
that we estimated above the time lag from INTERBALL- 1 to the 
Earth to have been --,3 min, while the observed lag appears to be 
11-17 min. This difference may come in part from the response 
time of the magnetopause to a southward turning of the IMF.) 
However, the electrojet intensification at --,0408 UT (line B) 
preceded the 0430 UT field maximum at POLAR. We interpret 
this intensification at •0408 UT as the first onset signature of 
multiple expansion onsets (lines B, C, and D); the interval 0408- 
0430 UT was in the initial unloading phase, but the pileup of the 
magnetic flux onto the polar magnetosphere continued, because 
the IMF was still southward. It is possible that the time variation 
of BT in the polar magnetosphere reflects the time variation of 
the energy input from the solar wind more directly than in the 
magnetotail proper where the effects of substorm onsets are 
also apparent. Another possible reason for the delay from the 
initial onset (line B) to the maximum 6BT at POLAR would be 
the propagation time delay of the signal of the onset from the 

is almost parallel to the ZF^ axis. For the sake of physical clar- source region (in the near-Earth tail) to the polarmagnetosphere. 
ity, we will use the expression BT- BTmoael, or 6BT, instead of However, as stated in the next section, there is some difficulty 
6Bz,FA throughout this paper. with this explanation. 

6By F^ (roughly dawnward) did not change much when 6BT 
started' changing around 0312 UT (line A superposed on the 5. Behavior of the Plasmasheet 
figure), but 6Bx,F^ (roughly northward, perpendicular to the 
ambient field) started increasing at that time. That is, the mag- It is also interesting to compare the substorm signature in the 
netic field vector became less tilted (ambient field was southward polar magnetosphere with that in the magnetotail. The GEO- 
and sunward), consistent with decreased flaring ofthe lobe field. TAIL spacecraft was located around (-6.4,-8.8,-2.4) (RE) in 
This deflection may be an effect of the pileup of the reconnected GSM coordinates at 0500 UT. Figure 2 shows the data of PO- 
flux at the polar magnetopause northward of the satellite. That LAR and GEOTAIL in the same time frame. The bottom panel 
is, the piled-up flux would push the pre-existing polar mag- shows data from the low-energy plasma detector (LEP) on board 
netosphere tailward, and due to the finite conductivity of the GEOTAIL [Mukai et al., 1994]. The GEOTAIL spacecraft was 
ionosphere, the footprint of the field lines moved slower than located within the plasmasheet throughout the interval of the 
the field lines in the polar magnetosphere, thus leading to less figure: Before ,--0500 UT, the ion density was rather high and 
tilt. the ions were not moving much (as shown in the ion bulk ve- 

locity data), which are features of the plasmasheet ions. The 
4. Behavior of the Auroral Currents gradual temperature decrease from --,0300 UT to --,0500 UT 

can be explained in terms of the plasmasheet thinning during 
Returning to the timing study, the line A superposed on Fig- the loading phase of the substorm: Because of the thinning, 

ure 2 marks the start of the increase in 6BT. Many of the ground the relative distance of the spacecraft from the center of the 
magnetometers data start to be perturbed; the perturbations are plasmasheet increased, which caused the decrease in tempera- 
gradual until the time of line B, and thus they are consistent with ture. The ion density gradually increased from --,0300 UT to 
the loading phase of the substorm. The difference field, 6BT, at --,0430 UT and then decreased until --,0500 UT. The decrease 
POLAR suggests tha, t the flux pileup continued during this in- is consistent with the above-explained increase in the spacecraft 
terval. We note there was a minimum around 0330-0337 UT in distance from the center of the plasmasheet during the loading 
the data from FCHU and PBQ. (The Z componentat FCHU also phase. The increase until --,0430 UT may have been caused by 
showed a general minimum, with twin (negative) peaks around the compression of the plasma sheet during the loading phase, 
0330 and 0337 UT, (not shown).) However at ESKI and GILL, which overcame the effect of the relative motion of the space- 
adjacent stations of FCHU in the same meridional chain, there craft away from the plasmasheet center. Another possibility is 
was not much peak-like perturbation. This feature suggests that the dawnward motion of the spacecraft: As a spatial structure of 
this minimum occurred only within a limited range of latitudes the plasmasheet, its density increases with decreasing distance 
including FCHU and PBQ, possibly on a narrow auroral oval from the flank magnetopause [e.g., Lennartsson and Shelley, 
during the loading phase. We note the Z component of the mag- 1986]. 
netometer data showed a small positive perturbation at ESKI, After --,0500 UT, the ion temperature jumped up, and there 
a large negative perturbation at FCHU, and a small negative was a burst of earthward and dawnward ion flow with the du- 
perturbation at GILL (not shown). This also suggests that the ration of --,3 min. Thus, at first sight, GEOTAIL data appear 
current was narrow, and was located between ESKI and GILL, to suggest that the substorm onset was --,0500 UT. There is a 
and a little north ofFCHU. LANL energetic electrons (>50 keV) 52 min lag from 0408 UT, the initial onset time on the ground 
at synchronous orbit (not shown) exhibit no flux enhancement (line B). A possible way to explain this difference is the Y po- 
at this time. The decrease in 6Bx,FA and 6BT at POLAR around sition of GEOTAIL. That is, because GEOTAIL was located at 
0339 UT might be related to the above weak ground activity, Y = -8.8, or at 3.6 hour MLT, dawnward propagation of sub- 
but the particle data obtained by POLAR suggest a different storm signal, from the onset region, might have taken several 
explanation as discussed in section 6. tens of minutes to reach the GEOTAIL position. Nagai [1982, 

Around 0408 UT (line B), FCHU and GILL recorded a sudden Figure 12] reports that the east-west propagation speed of the 
decrease in the X component. Lines C and D mark the following substorm onset region, or so called the current wedge, is 3 --, 7 
sudden decreases in the X component at several stations (around [min/MLT hour]. We note in Figure 2 that the multiple onsets are 
0435 and 0500 UT), indicative of intensification of the westward more apparent at the 327 o geomagnetic longitude chain than in 
electrojet. Whether they all correspond to substorm onsets is an any other longitudes, thus the onsets are likely to have happened 
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in the premidnight sector, around 22 hour MLT. Then, the prop- 
agation time from 22 hour to 3.6 hour MLT is estimated t9 have 
been 17 ~ 40 min. The observed time lag (52 min) is larger 
than 40 min, but at least some of the lag may be explained in 
terms of the east-west propagation of the substorm heating of the 
plasmasheet. We note that GOES 8 satellite detecte d an initial 
onset of dipolarization at ~0427 UT and at ~23.5 hour MLT 
(not shown). That is, the onset at GOES 8, located between 
the ground magnetometer chain and GEOTAIL i•n longitude, 
happened after the event B and before the onset at GEOTAIL, 
which is consistent with the eastward propagation of the current 
wedge. We also note that LANL satellite 1990-095 detected an 
initial onset of energetic electrons (> 50 keV) at ~0420 UT and 
at ~2 hour MLT (not shown). This is also consistent, and the 
earlier onset than at GOES 8 may be explained in terms of faster 
propagation of energetic particles than the current wedge. 

Finally, in relation to the above, we note that POLAR was 
similarly distant from the expansion onset region (presumably 
inthe near-Earth tail) to that of GEOTAIL. Thus the bnset signal 
would have spent similar time to propagate to POLAR, but the 
time delay from the initial ground onset tO the 6BT maximum 
at POLAR (from ~0408 to ~0430 UT) was smaller than that 
at GEOTAIL (from ,--,0408 to ,,00500 UT). Thus the delay for 
POLAR may not be explained in terms of the propagatio n of the 
onset signal. 

6. Polar Energetic Particles 
Finally we briefly mention the IMF Bx effect on the magnetic 

field and particle populations at the site of POLAR. The instru- 
ment called CEPPAD/IPS on board POLAR [Blake et al., 1995] 
observes ions in the energy range from 12 to 1500 keV. From 
0000 to 0800 UT on March 28, ! 996, this instrument observed 
almost nothing, except for the interval from 0333 to 0357 UT 
when the instrument recorded •< 60 keV ions (not shown). These 
ions were rich in He ++ and high-charge state (> +6) Oxygen (not 
shown). Thus they were of solar wind origi n . This phenomenon 
is often observed by CEPPAD in northern polar magnetosphere 
when IMF Bz > 0, or when Bx < 0, and most strongly when 
both are true [Spence and Blake, 1997]. We note that IMF Bx 
was negative during the interval from 03 !5 to 0420 UT (see 
Figure 1). Although IMF Bz was negative throughout the in- 
terval, reconnection at the lobe magnetopause is possible due to 
the negative IMF Bx, which could explain the observed solar 
wind-origin particles. 6BT at POLAR was generally increasing 
during this interval (see Figure 2), indicative of continuing day- 
side merging. However, there was a small dip in 6BT around 
0339 UT, which could be a diamagnetic effect caused by the par- 
ticle population. We also note 6BX,FA transiently decreased at 
the same time, which indicates that the magnetic field tilt briefly 
recovered toward the pre-substorm value. Lobe reconnection at 
this time is consistent with this change in the magnetic field tilt 
angle. 

7. Summary 

The general substorm correspondence of the behavior of the 
magnetic field at (-0.8,-0.6,8.5) is clear. The magnetic field 
increases during the loading phase and decreases during the 
unloading phase. Good correspondence of the polar field vari- 
ations and the ground onsets is seen. Activity at the GEOTAIL 
spacecraft to the dawnside of the near tail however is delayed, 
presumably due to the east-west propagation lag of the current 
wedge. 
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