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Effect of Carex rostrata on seasonal and interannual variability
in peatland methane emissions

Genevieve L. Noyce,1,2 Ruth K. Varner,1 Jill L. Bubier,3 and Steve Frolking1

Received 12 August 2013; revised 3 December 2013; accepted 7 December 2013; published 10 January 2014.

[1] Peatlands are a large natural source of atmospheric methane (CH4), and the sedgeCarex
rostrata plays a critical role in the production, oxidation, and transport of CH4 in these
systems. This 4 year clipping experiment examined the changes in CH4 emissions from a
temperate peatland after removing all aboveground C. rostrata biomass. Methane fluxes,
dissolved CH4, and environmental variables were measured during spring, summer, and fall
from 2008 to 2011. Clipping and removing the C. rostrata leaves and stems caused an
immediate decrease in CH4 emissions that persisted over 4 years of this study. There was a
strong seasonal trend in CH4 flux, with the largest treatment effects occurring during the fall
months when the sedges were senescing. As expected, there was a strong positive
correlation between C. rostrata green-leaf area and CH4 flux, implying that the presence of
C. rostrata increases CH4 emissions from this peatland. Large interannual variability in
vegetation distribution and biomass, water table depth, and temperature was observed in this
study, indicating the importance of multiyear studies for understanding the interactions
among these factors to determine how they could be incorporated into biogeochemical
models to predict CH4 emissions under changing environmental conditions.

Citation: Noyce, G. L., R. K. Varner, J. L. Bubier, and S. Frolking (2014), Effect of Carex rostrata on seasonal and
interannual variability in peatland methane emissions, J. Geophys. Res. Biogeosci., 119, 24–34, doi:10.1002/2013JG002474.

1. Introduction

[2] Peatlands contain one third of the global soil carbon (C)
pool [Gorham, 1991] and release around 30 Tg of methane
(CH4) per year [Frolking et al., 2011]. The magnitude of CH4

emission varies widely depending on a variety of controls, in-
cluding vegetation, temperature, and precipitation patterns;
and peatlands can shift from net sources to net sinks of C from
year to year [e.g., Carroll and Crill, 1997; Bubier et al., 2003;
Roulet et al., 2007]. The net amount of CH4 released to the at-
mosphere depends on the difference between CH4 production
in the saturated zone of the peat and CH4 oxidation in the unsat-
urated surface layer. High CH4 emissions occur when a concen-
tration gradient allows for diffusion from belowground and
when there is a mechanism for CH4 to be transported above-
ground, either through plants or ebullition (bubbling).
[3] Many studies have reported a positive correlation be-

tween the presence of aerenchymous vegetation, including

sedges, and high CH4 emissions when compared to sites
dominated by shrubs [Shannon and White, 1994; Bubier
et al., 1995; Bubier, 1995; Bellisario et al., 1999; Joabsson
and Christensen, 2001; Ström and Christensen, 2007;
Miao et al., 2012]. Similarly, CH4 fluxes increased after
aerenchymous plants emerged and decreased after they
senesced [Wilson et al., 1989; Dise et al., 1993; Leppälä
et al., 2011]; and in clipping experiments, CH4 emissions
were highest from sites with intact sedges [e.g., Whiting
and Chanton, 1992; King et al., 1998; Verville et al., 1998;
Strack et al., 2006].
[4] Sedges release high-quality carbon as root exudates,

which promote CH4 production through the acetate fermenta-
tion pathway, and sites dominated by sedges have more acetate
fermentation than Sphagnum-dominated sites [Bellisario et al.,
1999; Popp et al., 1999; Prater et al., 2007; Rooney-Varga
et al., 2007]. High CH4 emissions are correlated with periods
of active plant growth and with autumnal litter fall, both of
which are inputs of carbon [Wilson et al., 1989; Moore
et al., 2011]. In addition, sedges provide a conduit to the atmo-
sphere that bypasses the main zone of CH4 oxidation, making
plant-associated transport the foremost method of CH4 release
in sedge-dominated wetlands [Chanton, 2005].
[5] While many sedge clipping experiments have included

CH4 measurements, these studies have generally been
conducted over a single growing season [e.g., Whiting and
Chanton, 1992; Shannon et al., 1996; Waddington et al.,
1996; Kelker and Chanton, 1997; Frenzel and Karofeld,
2000; Greenup et al., 2000; Strack et al., 2006] or as a single
measurement [e.g., Schimel, 1995; Kutzbach et al., 2004].
When CH4 fluxes have been measured during subsequent
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years of clipping experiments, data have still only been col-
lected during the growing season [e.g., King et al., 1998;
Verville et al., 1998].
[6] This study investigated the links between Carex

rostrata, a circumboreal wetland sedge species found in
North America, Asia, and Europe, and CH4 fluxes from a
temperate fen in the northeast U.S. during a 4 year clipping
experiment. Data were collected from the month before the
clipping experiment was implemented through 41 months af-
ter, covering four C. rostrata growing seasons in addition to
including data from spring and fall months. We examined the
clipping effect over 4 years with varying temperatures and
levels of precipitation and also analyzed seasonal trends. In
addition, we estimated the role of C. rostrata in CH4 trans-
port. We hypothesized that CH4 emissions would always be
highest from the C. rostrata-dominated plots, especially dur-
ing the growing season, but that this effect would be miti-
gated during periods of low water table depth when sedge
roots are in the unsaturated zone. In addition, we hypothe-
sized that vegetation-assisted transport would be the main re-
lease of CH4 from the C. rostrata-dominated plots.

2. Methods

2.1. Site Description

[7] Sallie’s Fen is a temperate, mineral-poor fen located in
Barrington, New Hampshire (43°12.5′N, 71°3.5′W). This
1.7 ha peatland receives water from runoff, rainfall, and a
small ephemeral stream that runs along the northern
edge. The biologically active season runs from late
April to October, with senescence of most deciduous
plant species beginning in late August. The ground layer
is dominated by Sphagnum moss species (e.g., Sphagnum
fallax and Sphagnum magellanicum). Dominant vascular
plants include ericaceous evergreen shrubs such as leath-
erleaf (Chamaedaphne calyculata), sheep laurel (Kalmia
angustifolia), and cranberry (Vaccinium oxycoccus and
Vaccinium macrocarpon), and deciduous shrubs such as
speckled alder (Alnus incana ssp. rugosa) and highbush
blueberry (Vaccinium corymbosum), as well as sedges
(Carex rostrata and Carex aquatilis) and three-leaved
Solomon’s-plume (Maianthemum trifolium). Red maple
(Acer rubrum) is the dominant tree and lines the edges
of the fen.

2.2. Experimental Design

[8] In April 2008, we inserted six aluminum collars
(60 × 60 × 25 cm frames) into the northeast part of the fen,
where C. rostrata is the dominant vascular plant species.
Each plot had nearly 100% Sphagnum moss cover and other
vegetation included C. calyculata, V. oxycoccus, M. trifo-
lium, and A. rubrum. The collars were distributed in pairs
such that each pair had comparable temperature and water ta-
ble conditions. June 2008 served as a calibration period to de-
termine the similarity of the plots prior to clipping.
[9] On 2 July 2008, around the peak of the C. rostrata

growing season, the aboveground C. rostrata was removed
from one collar in each pair. C. rostrata plants were clipped
to just below the Sphagnum surface. The remaining
aerenchymous stems were covered with small plastic bags
filled with petroleum jelly and sealed at their base to prevent
CH4 and oxygen transport through the aerenchyma. The

three remaining plots were left as undisturbed controls.
Prior to CH4 flux measurements, any C. rostrata stubble vis-
ible above the Sphagnum surface in the clipped plots was
reclipped and resealed as needed. By 2010, C. rostrata
growth in these plots was minimal and reclipping was
rarely necessary.

2.3. Methane Flux Measurements

[10] Methane fluxes were measured once or twice per week
from June through August and once or twice per month from
September through November in 2008, 2009, 2010, and
2011. In 2010 and 2011, CH4 fluxes were also measured
weekly or twice-monthly fromMarch through May, just after
the emergence of green C. rostrata growth. Most fluxes in
this study were measured in late morning: von Fischer
et al. [2010] determined that CH4 flux rates are generally sta-
ble over a 6 h time period and thus that an individual flux
measurement can be representative of the daily rate of CH4

emission through diffusive pathways. Fluxes were measured
using a static chamber technique [e.g., Frolking and Crill,
1994]. A clear Teflon chamber measuring 60 × 60 × 90 cm
(see Carroll and Crill [1997] for description) was placed in
the grooved aluminum collars. The chambers contained fans
to circulate the internal air and a climate control system to
keep relative humidity and temperature close to ambient con-
ditions. After placement, the chamber was left open for 5–10
min to minimize disturbance effects and allow the air inside
the chamber to return to ambient conditions. To measure
CH4 flux, the chamber was closed and covered with a shroud
designed to block out all light and to further minimize
changes in temperature and relative humidity during the mea-
surement period. Five 60 mL headspace samples were taken
from inside the chamber every two minutes for a 10 min pe-
riod using polypropylene syringes (BD, Franklin Lakes, New
Jersey) equipped with three-way stopcocks. Ambient air out-
side the chambers was also sampled.
[11] The air samples were analyzed on a Shimadzu GC-

14A gas chromatograph equipped with a flame ionization
detector (GC-FID) within 6 h. The GC-FID operates with
the following conditions: 130°C injector and detector tem-
peratures, 50°C column temperature, and an Ultra High
Purity nitrogen carrier gas flow rate of 30 mL min�1 through
a 2 m 1/6 inch o.d. stainless steel packed column (HayeSepQ
100/120). The GC-FID was calibrated using a standard
of 1.8612 ppm CH4 (2008–2010) or 3.266 ppm CH4

(2010–2011). The standard error of 10 standard injections on
any sampling day was less than 0.1%. Standards are breathing
air cylinders calibrated against standards from NOAA’s Earth
System Research Laboratory’s Global Monitoring Division’s
Carbon Cycle Greenhouse Gases Group. Each sample was
run twice and the average concentration was used for the final
calculations. Fluxes were calculated as the slope of the linear
regression of CH4 concentration versus time. Nonlinear
regressions, most likely due to chamber leakage, disturbance,
or episodic ebullition, were discarded from subsequent
analyses (approximately 10% of data). Nonlinearity was
determined as data falling outside the 95% confidence level
for linear regressions. Other discarded data included any
measurements where the initial CH4 concentration in the
chamber was substantially above ambient concentrations
and any negative fluxes because these were presumed to
be due to disturbance from placing the chamber.
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2.4. Peat Pore Water Methane Measurements

[12] Two stainless steel sippers (3 mm diameter) were
perforated at the end and inserted inside each collar in
June 2008, adjacent to a C. rostrata plant, to sample peat
pore water at 18 and 60 cm below the peat surface.
Eighteen centimeters was determined to be the dominant
rooting zone for C. rostrata, while 60 cm is presumably
below the bulk of the C. rostrata roots and always below
the water table. During dry periods, we were unable to
collect 18 cm pore water for analysis. After flux measure-
ments, any water in the sippers was drawn up and discarded,
after which a 30 mL sample was drawn and stored in a
plastic syringe. Peat pore water was collected during every
sampling season except fall 2008.
[13] To determine the dissolved CH4 concentration in the

pore water samples, each syringe was filled with 30 mL of
ambient air and shaken vigorously for 2 min to allow the
dissolved CH4 to equilibrate with the air. Two 10 mL repli-
cates of the headspace air were then immediately analyzed
on a GC-FID that had been calibrated using 1000.6 ppm
CH4 (Scott Specialty Gases, Plumsteadville, Pennsylvania).
The average of these replicates was used as the sample con-
centration. Occasionally, samples were stored at 4°C for 24
h instead of being analyzed on the same day as collection.
In these cases, the samples were returned to room tempera-
ture before being analyzed.

2.5. Carex rostrata Measurements

[14] Every other week throughout summer 2008 and 2009
and spring through fall 2010 and 2011, C. rostrata Green
Area Index (GAI) was measured in each plot using a tech-
nique similar to that described by Wilson et al. [2007].
Each C. rostrata leaf in the plots was measured and
assigned to an approximate height class (0–20 cm, 21–40 cm,
41–60 cm, 61–80 cm, and 81+ cm). Widths of five
C. rostrata leaves from each height class were measured.
These widths were averaged together and multiplied by
the midpoint of each height class and the number of leaves
in that class to approximate C. rostrata GAI in each plot
in m2 C. rostrata per m2 ground. C. rostrata GAI was line-
arly interpolated between measurement days. In addition,
the maximum and minimum heights of C. rostrata green-
leaf area were measured for 10 C. rostrata plants in three
sections of the fen twice a month during the growing season
for all years.
[15] Following the initial clipping in 2008, the clipped

C. rostrata leaves were dried and weighed for a biomass es-
timate. These weights were plotted with corresponding GAI
measurements to give an equation for calculating biomass
from GAI: C. rostrata dry biomass (g m�2) = 107.03 × C.
rostrata GAI (m2 m�2) + 14.04 (R2 = 0.98). This equation
was then used to approximate C. rostrata biomass in the
unclipped collars.

Figure 1. (a–d) Time series of mean CH4 fluxes (black) for 2008 through 2011. Solid circles and
lines indicate the control plots; open circles and dashed lines indicate the clipped plots. Error bars
indicate standard error. The vertical dotted line in Figure 1a indicates the clipping date. (e–h)
Time series of mean C. rostrata Green Area Index (GAI) in control plots (points) and mean daily
water table depth across both treatments (lines) for 2008 through 2011. The horizontal dotted line
indicates the peat surface. Shading denotes spring, summer, and fall seasons.
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2.6. Environmental Variables

[16] Meteorological data were collected continuously at
Sallie’s Fen using an automated meteorological station
located in the approximate center of the fen. Daily mean
water table depth and air temperature from the met station
were used in this analysis. When continuous temperature data
were not available, we interpolated using a linear relationship
with data from a secondary temperature probe (R2 = 0.91).
[17] Perforated PVC wells were inserted next to each collar

for water table measurements. Water table depth was mea-
sured manually relative to the peat surface on the same days
as flux measurements. The average difference in water table
depth at each collar relative to the continuous data was used
to calculate collar water table depth between measurement
days. Air and peat temperature, at the surface and at 10 cm
below the peat surface, were manually measured at the same
time as the CH4 fluxes.

2.7. Data Analysis

[18] R Project for Statistical Computing (version 2.15.1)
was used for all statistical analyses. For correlations and

regressions, a natural-log transformation was used on the
CH4 flux data to more closely approximate a normal distribu-
tion. Pearson’s product moment correlation coefficients were
calculated between ln CH4 flux, 18 cm dissolved CH4, 60 cm
dissolved CH4, C. rostrata GAI, water table depth, air tem-
perature, and peat temperature. Correlations were calculated
using all the data combined and then separating the data into
control and clipped plots, but always including all 4 years.
One-way analyses of variance (ANOVAs) were conducted
between yearly means of water table depth and air tempera-
ture. Post-hoc analysis with Tukey’s Honestly Significant
Difference (HSD) test was used to identify years with
significant differences.
[19] Data were divided into seasons based on C. rostrata

growth; C. rostrata begins to produce green leaves and
grow rapidly in spring (1 March to 31 May), reaches maxi-
mum biomass in summer (1 June to 31 August), and
senesces during the fall (1 September to 30 November).
This allowed for analysis during the growing seasons to
compare with other experiments, as well as investigation
of effects during other major phenological periods, including
green-up and senescence.
[20] Instances where a data point was missing for one collar

in a pair were removed from the data set prior to statistical anal-
ysis (resulting in the exclusion of 41 out of 481 CH4 fluxes and
36 out of 782 pore water CH4 concentrations). This kept means
from being skewed toward collars with fewer missing data.
[21] To determine the effect of treatment on CH4 fluxes,

dissolved CH4 concentration, water table depth, or peat tem-
perature across the entire experiment, paired t tests were
conducted between the clipped collars and their correspond-
ing control collar. One-way ANOVAs were conducted be-
tween yearly means of CH4 fluxes and dissolved CH4

concentration and Tukey’s HSD test was used to identify
the significantly different means. To determine the interac-
tion between treatment and season, a two-way repeated mea-
sures ANOVA was conducted using data from all 4 years,
with season as a within-subject factor and treatment as a be-
tween-subject factor. Ratios of CH4 fluxes were calculated
between paired collars on a daily basis and averaged per col-
lar for each measurement season. One-sample, one-sided t
tests were used to determine which seasons had mean ratios
that were significantly negative, implying a reduction of
CH4 flux from the clipped plots.

2.8. Methane Transport Estimates

[22] To estimate the role of C. rostrata in CH4 emissions
from Sallie’s Fen, we assumed that all CH4 emitted from
the clipped plots occurred through diffusion. The rate of dif-
fusive flux can be approximated using a known gradient of
CH4 and the following equation

Fdiff ¼ Keff�ΔCH4

z
(1)

where Fdiff is the diffusive flux of CH4, ΔCH4 is the
change in CH4 concentration along the gradient, z is the
depth of the layer, and Keff is an effective diffusion coef-
ficient that incorporates the net rates of CH4 oxidation
and diffusion at this site [Lerman, 1979]. The gradient
was estimated using the difference between the 18 cm pore

Table 1. Summer Means, Minimums, and Maximums (June, July,
and August) for 2008 Through 2011

2008 2009 2010 2011

Control Water Table Depth (cm)
Minimum 0.1 5.2 3.4 2.4
Mean 13.5a 16.7b 27.2c 18.6d

Maximum 22.7 26.7 49.5 40.5
Clipped Water Table Depth (cm)
Minimum 0.0 �0.7 �1.5 �3.5
Mean 13.3a 10.8b 22.3c 12.7a

Maximum 22.5 20.8 44.6 34.5
Air Temperature (°C)
Minimum 13.3 12.0 12.7 14.5
Mean 19.3ab 18.4a 20.0b 23.8c

Maximum 25.2 24.0 27.4 35.5
Peak C. rostrata Biomass (g m�2)

7 Aug 3 Aug 8 Jul 7 Jul
96 172 185 246

Control CH4 Flux (mg CH4 m
�2 day�1)

Minimum 44.2 12.4 29.4 70.5
Mean 184.3a 156.7a 133.2b 152.7a

Maximum 686.7 312.7 448.9 497.1
Clipped CH4 Flux (mg CH4 m

�2 day�1)
Minimum 55.0 32 25.8 36.8
Mean 131.9a 105.2a 73.5b 92.8a

Maximum 389.7 322.2 134 312.4
Control 18 cm Pore Water CH4 (ppm CH4)
Minimum 255 959 766 728
Mean 4,087a 4,034a 2,838b 3,832a

Maximum 10,625 8,226 6,159 7,531
Clipped 18 cm Pore Water CH4 (ppm CH4)
Minimum 480 1,750 1,239 2,043
Mean 6,141a 4,508b 3,787c 3,962b

Maximum 10,710 8,083 6,859 7,774
Control 60 cm Pore Water CH4 (ppm CH4)
Minimum 2,794 2,903 1,101 1,513
Mean 6,714a 6,115a 6,748a 5,514a

Maximum 11,060 13,389 10,608 9,098
Clipped 60 cm Pore Water CH4 (ppm CH4)
Minimum 21 2,073 1,015 1,091
Mean 6,324ab 6,688ab 7,235a 5,416b

Maximum 11,005 16,806 17,669 11,857

Letters indicate statistically significant (P< 0.05) differences between
yearly means.
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water CH4 concentration and the ambient surface CH4

concentration, which is a very coarse approximation.
Fdiff was assumed to equal the measured CH4 flux from
the clipped plots. Keff was calculated using monthly means
of CH4 flux and dissolved CH4 concentration and then
averaged across the entire data set to get an effective
diffusion coefficient of 8.0 ± 1.1 × 10�3 m2 s�1. This

coefficient was assumed to be unaltered by treatment and
the mean value was used to estimate monthly diffusive
fluxes from the control plots, again using the simplified
gradient from 18 cm to the peat surface. The mean
monthly CH4 flux from C. rostrata transport was then
approximated as the difference between the mean monthly
flux and the estimated diffusive flux.

Table 2. Correlation Coefficients Among CH4 Fluxes, C. rostrata Green Area, and Environmental Variables Across All 4 Years

ln CH4 Flux 18 cm CH4 60 cm CH4 Carex GAI Water Table Depth Air Temperature 10 cm Temperature

All Data
ln CH4 flux 1 0.24c �0.15c 0.43c �0.05 0.54c 0.46c

Control Plots
ln CH4 flux 1 0.38c �0.16a 0.46c �0.16a 0.60c 0.46c

Carex GAI 0.46c 0.13 �0.22c 1 0.04 0.46c 0.31c

Clipped Plots
ln CH4 flux 1 0.26c �0.13 – �0.12 0.67c 0.54c

aindicates significance at α= 0.05.
bindicates significance at α= 0.01.
cindicates significance at α= 0.001.
Units: ln CH4 flux (mg CH4 m

�2 day�1), pore water CH4 (ppm CH4), Carex GAI (m
2 m�2), water table depth (cm), temperature (°C).

Figure 2. Time series of differences (control minus treatment) between paired collars throughout all 4
years in (a) CH4 fluxes, (b) 18 cm dissolved CH4, and (c) 60 cm dissolved CH4. Shading denotes spring,
summer, and fall seasons.
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3. Results

3.1. Hydrological and Temperature Conditions

[23] Depth to water table and the magnitude of seasonal
fluctuations varied by year (Figures 1e–1h), resulting in signif-
icant (P< 0.001) interannual variability in mean summer wa-
ter table depth (Table 1). The year 2010 was very dry, with the
mean summer water table averaging almost 33 cm below the
peat surface, which was 11 to 26 cm deeper than in the other
years (Table 1). Air temperature varied across the 4 years but
followed the same general seasonal trend. The most
interannual variability occurred during spring and fall, but
2011 had a mean summer air temperature of 23.8°C, which
was 3.8 to 5.4°C higher than the mean temperatures for the
other 3 years (Table 1).Mean summer air temperatures were sig-
nificantly (P< 0.05) different between most years (Table 1).
Overall, 2008 was a wet summer with average temperatures,
2009 was cooler and slightly drier, 2010 was very dry with
similar temperatures to 2008, and 2011 was the warmest year
but between 2009 and 2010 in terms of moisture.
[24] Removing the sedges altered water table depth but had

no significant effect on peat temperature. There was no signif-
icant difference in water table depth between the treatments in
2008, but for 2009 through 2011, the water table was signifi-
cantly (P< 0.05) higher in the clipped plots compared to their
paired control plot by an average of 4 cm (Table 1).

3.2. Carex rostrata Growth

[25] In each year, C. rostrata began to produce green leaves
in March or April and continued to grow throughout the
summer. In 2008 and 2009, even though C. rostrata started
senescing in mid-July to late July (around day 200), overall
green-leaf area increased because new shoots continued to
emerge (Figures 1e–1f). In 2010 and 2011, however,C. rostrata
biomass in the control plots peaked in the beginning of July and

tailed off through the summer and fall (Figures 1g–1h). The
maximum height of C. rostrata was similar across all four
summers (around 90 cm), but the maximumC. rostrata biomass
in the control collars during the measurement period (as approx-
imated by GAI) was much lower in summer 2008 and much
higher in summer 2011 compared to the other years. Peak
C. rostrata biomass during the growing season was estimated
as 96 g m�2 in 2008, 172 g m�2 in 2009, 185 g m�2 in 2010,
and 246 g m�2 in 2011 (Table 1).C. rostrata growth was signif-
icantly (P< 0.001) correlated with both air temperature and peat
temperature but not with water table depth (Table 2).

3.3. Comparison of Plots Prior to
Experiment Implementation

[26] Plots were set up as spatially correlated pairs to ensure
similar environmental conditions within a pair and reduce var-
iability in fluxes, thus highlighting the treatment effect. Prior
to clipping, CH4 fluxes ranged from 19.3 to 563.6 mg CH4

m�2 day�1 in the clipped collars and from 9.7 to 580.0 mg
CH4 m

�2 day�1 in the control collars (Figure 1a). On average,
CH4 fluxes from the treatment collars prior to clipping were
almost 40 mg CH4 m

�2 day�1 higher than CH4 fluxes from
the control collars, but the means were not significantly differ-
ent (P=0.974). Despite the observed differences in CH4 flux
magnitude, there were no similar trends in mean dissolved
CH4 concentrations between the two sets of plots at either 18
or 60 cm below the peat surface during the preclipping period.

3.4. Treatment Effect on Methane Fluxes

[27] Over 4years, CH4 fluxes after clipping ranged from 6.6
to 497.1 mg CH4 m

�2 day�1 in the control collars, with a mean
flux of 125.3mgCH4m

�2 day�1 and from 1.8 to 322.2mgCH4

m�2 day�1 in the clipped collars, with a mean flux of 74.4 mg
CH4 m

�2 day�1 (Figures 1a–1d). Across the entire experiment,
CH4 fluxes from the control collars were significantly

Figure 3. Effect of clipping on CH4 flux for 2008 through 2011. The treatment ratio is the CH4 flux from each
control collar divided by the CH4 flux from its paired clipped collar, minus one, so a value of zero is no treat-
ment effect. Bars represent seasonal averages for each year and across all 4 years combined. Error bars represent
standard error. Symbols indicate means that are significantly nonzero: * P< 0.05, ** P< 0.01, *** P< 0.001.
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(P< 0.001) higher than from their paired clipped collar
(Figure 2a). The treatment difference in CH4 fluxmagnitude var-
ied throughout the experiment, with the largest average differ-
ence in CH4 flux between paired collars during the C. rostrata
growing season occurring in 2010 (67.9 mg CH4 m

�2 day�1)
and the smallest difference occurring in 2008 (42.8 mg CH4

m�2 day�1). Across all measurement seasons, the largest differ-
ence occurred in fall 2009 (111.3 mg CH4 m

�2 day�1) and the
smallest occurred in spring 2010 (14.5 mg CH4 m

�2 day�1).
[28] After clipping in 2008, the mean CH4 flux over the re-

mainder of the summer increased by 30% in the control plots
and decreased by 22% in the clipped plots, though these re-
sponses were not significantly different from each other.
Throughout the rest of the experiment, summer CH4 fluxes
from the clipped plots were 10% less than fluxes from the con-
trol plots in 2008, 6% less in 2009, 30% less in 2010, and 33%
less in 2011, though the average treatment effect was largest
during the fall months (Figure 3). While summer clipped
fluxes averaged between 67% and 94% of the magnitude of
summer CH4 fluxes from the control plots, fall clipped fluxes
ranged from 33% of control fluxes in 2009 to 75% in 2008.
For individual years and seasons, there was a significant
(P< 0.05) reduction of CH4 emissions from the clipped

collars compared to their paired control collars in summer
2011 and fall 2009, 2010, and 2011 (Figure 3). Though both
treatment (F1,420, P< 0.001) and season (F2,420, P< 0.001)
significantly affected CH4 fluxes across the entire data set,
there was no significant interaction between treatment
and season.
[29] Overall, CH4 flux was significantly (P< 0.001) posi-

tively correlated with C. rostrata green area, 18 cm pore
water CH4 concentrations, and air and peat temperature
(Table 2). CH4 flux from the control plots was also signifi-
cantly (P< 0.05) correlated with water table depth, though
there was no significant correlation between water table and
fluxes from the clipped plots (Table 2). The control CH4

fluxes were more strongly correlated with pore water CH4

concentrations than the clipped CH4 fluxes were (Table 2),
while the clipped fluxes were more strongly correlated with
air temperature than the control fluxes were (Table 2), though
these treatment effects were not significant. Even when the
dissolved CH4 concentrations were similar between the treat-
ments, the control plots still had higher CH4 fluxes and both
control and treatment plots had strong linear correlations be-
tween 18 cm dissolved CH4 concentrations and flux
(Figure 4a and Table 2). Between 40 and 70% of CH4

Figure 4. (a) Relationship between mean monthly CH4 fluxes and mean monthly 18 cm dissolved CH4

concentration for control and clipped plots. (b) Mean monthly CH4 flux from control plots across all 4 years
(solid line) and estimated monthly means of CH4 emitted through diffusion in the control plots (dashed
line). Error bars indicate standard error.

NOYCE ET AL.: EFFECT OF C. ROSTRATA ON CH4 EMISSIONS

30



emissions from the control plots may occur through plant
transport (Figure 4b). The ratio of CH4 flux from the clipped
plots compared to their paired control plots was not signifi-
cantly correlated with water table depth or air temperature.

3.5. Treatment Effect on Pore Water Methane

[30] Over 4 years, the concentration of dissolved CH4 at 18
cm below the peat surface ranged from 199 to 10,625 ppm in
the control collars with a mean concentration of 3192 ppm
and from 107 to 10,710 ppm in the clipped collars with a
mean concentration of 4099 ppm. After clipping in 2008,
the mean dissolved CH4 concentration at 18 cm below the
peat surface increased by 105% from June (before clipping)
to July and August (after clipping) in the clipped plots while
the mean concentration in the control plots only increased by
35%, which was a significant treatment effect (P< 0.05).
Across all 4 years, 18 cm dissolved CH4 was significantly
(P< 0.001) higher in the clipped plots compared to their
paired controls (Figure 2b). Over 4 years, the concentration
of dissolved CH4 at 60 cm below the peat surface ranged
from 35.8 to 38,245 ppm in the control collars with a mean
concentration of 4872 ppm and from 21.0 to 51,921 ppm in
the clipped collars with a mean concentration of 5268 ppm
(Table 1). Clipping did not significantly affect 60 cm
dissolved CH4 concentrations (Figure 2c).

4. Discussion

4.1. Effect of Carex rostrata Clipping on
Methane Emissions

[31] As expected, summer CH4 fluxes were generally
higher from the control plots than from the clipped plots in
all 4 years (Figure 2a) and clipping significantly reduced
CH4 flux across all four summers (Figure 3). In particular, a
large effect was observed in summer 2008, directly after the
initial clipping. Even though plots in both treatments experi-
enced similar temperatures and water table levels throughout
the initial treatment year (2008), CH4 fluxes increased by
30% in the control plots from June (preclipping) to July
and August (postclipping) but decreased by 22% in the
clipped plots. Despite day-to-day variability in CH4, after
clipping there was a significant trend of larger fluxes occur-
ring from the controls compared to the clipped collars
(Figures 1 and 2a). Treatment had a significant effect across
the entire data set, which indicates that clipping and sealing
C. rostrata reduces overall CH4 emissions from this
peatland. A large percent of the annual CH4 flux occurs dur-
ing the peak growing season; vegetation-related controls
most likely dominate annual fluxes and thus are important
to consider in biogeochemical models [von Fischer et al.,
2010]. Riutta et al. [2007] also concluded that plant commu-
nity is very important in predicting CH4 flux, even across
otherwise homogenous sites, and Moore et al. [2011] found
that vegetation was the most important predictor of individ-
ual CH4 fluxes throughout their 5 year study.
[32] Our results are consistent with those found in other

sedge-removal experiments. For example, Kelker and
Chanton [1997] and Waddington et al. [1996] both saw
reductions in CH4 flux when Carex species were removed
from Canadian fens. Other studies observed a more pro-
nounced response, with CH4 emissions from clipped plots
totaling only 3 to 40% of those from nearby control plots

[Whiting and Chanton, 1992; King et al., 1998; Verville
et al., 1998; Frenzel and Karofeld, 2000; Strack et al.,
2006]. Frenzel and Karofeld [2000], in particular, saw a
97% decrease in CH4 flux after clipping Scheuchzeria palustris
and Eriophorum vaginatum. This variability may be related
to the amount of sedge biomass removed in these experiments
or to the particular sedge species [Ström et al., 2005].
[33] Contrary to expectations, the effect of C. rostrata clip-

ping, as shown by the ratio of CH4 flux from the clipped plots
compared to CH4 flux from the control plots, did not vary
with water table depth. Even though the water table was sig-
nificantly higher in the clipped plots in 2009 through 2011,
presumably because removing the sedges reduced evapo-
transpiration rates in the clipped plots, these later years still
showed a stronger treatment effect on CH4 emissions than
the initial clipping year when the water table depths were
the same in both treatments. Both control and clipped plots
tended to have lower CH4 emissions in drier years, but CH4

fluxes were still higher from the control plots. This may be
because C. rostrata has long rhizomes and roots that remain
partially in the anoxic zone even when the water table is low
[Hultgren, 1989a], as in summer 2010, so the plants could
still enhance CH4 emissions.

4.2. Seasonal Effects

[34] Clipping C. rostrata significantly decreased summer
CH4 emissions across the experiment, but there was also a
particularly strong effect of C. rostrata on fall (September
through November) CH4 emissions (Figure 3). The fall
CH4 emissions were usually larger in the control plots than
in their paired clipped plots across all 4 years (Figure 2a),
even though C. rostrata plants generally started to senesce
during that time period (Figures 1e–1h). The ratios of CH4

flux illustrate the strong treatment effect in fall, both in indi-
vidual years and throughout the entire experiment (Figure 3).
This implies that the effects of C. rostrata are not limited to
only its active growing period, especially when the water
table is high, as in fall 2009. Neither of the 2 years of spring
data showed treatment effects (Figure 3); spring CH4 fluxes
from the control and clipped plots were very similar
(Figures 1c, 1d, and 2a). Consequently, even though both
seasons had similar amounts of C. rostrata green area, C.
rostrata was more important in enhancing CH4 emissions
in fall.Moore et al. [2011] observed a similar trend of strong
vegetation effects on fall CH4 fluxes from a long-term study in
a Canadian bog. While the presence of the sedge Eriophorum
vaginatum was significantly correlated with CH4 emissions in
the summer months, it became the most important predictor
of CH4 emissions in September and October, presumably
because the higher water table in fall means the dominant
rooting zone is more likely to be saturated, enhancing root
effects on CH4 production and transport.
[35] In our study, there was no significant interaction be-

tween treatment and season for CH4 fluxes, implying that
seasonal trends in CH4 flux are not dependent on the presence
of C. rostrata. This is in contrast to Miao et al., [2012], who
found that CH4 fluxes from a boreal peatland only showed
seasonal trends in sedge-dominated sites. Methane diffusion
(whether through the peat or through sedge aerenchyma) is
driven by a concentration gradient, so fluxes are dependent
on the buildup of CH4 in the peat through the temperature-
dependent process of methanogenesis and thus fluxes exhibit
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seasonal patterns that follow the belowground CH4 concen-
tration regardless of the presence of C. rostrata (Table 2).

4.3. Long-Term Effects and Interannual Variability

[36] Summer C. rostrata biomass was much lower in 2008
than in later years of the experiment (Table 1 and Figures 1e–1h).
This is most likely related to C. rostrata shoot density; in
2008, the maximum C. rostrata density during the growing
season was 336 green shoots per m2, compared to nearly
double that the following year. Biomass may have slightly
increased after measurements of C. rostrata growth ended in
early August in 2008 and 2009, but given the lower number
of shoots in 2008 and the fact that Carex reached the same
maximum height in all years, 2008 almost certainly had the
lowest C. rostrata biomass of all 4 years. When the CH4 flux
collars were inserted in April 2008, a 10 to 20 cm slit was cut
into the peat, including through coarse and fine roots. Previous
studies have indicated a loss of vascular-plant density as a
result of collar insertion [Heijmans et al., 2004] and because
one of the sources of new C. rostrata roots is horizontally
growing rhizomes [Hultgren, 1989a], cutting through these
structures may have had a large effect on the emergence of
new shoots during the immediately following growing season.
The largest peak in new C. rostrata shoots also generally
occurs in the beginning of the growing season [Gorham and
Somers, 1973; Hultgren, 1989a; Saarinen, 1998] which was
shortly after the collars were installed in 2008 and thus
presumably when the disturbance effect was largest.
[37] Interannual variability in peat temperature and satura-

tion can also affect the growth rate and maximum biomass of
emergent C. rostrata [Gorham and Somers, 1973; Hultgren,
1989b]. In 2008, the peat temperature remained below freezing
until mid-April, which may have contributed to the lower over-
allC. rostrata biomass. Later spring flooding may have limited
early shoot growth as well. The timing of C. rostrata senes-
cence also varied between years, with browning occurring
earlier in 2010 and 2011. This may be a result of the low
water table level throughout most of 2010 (and in 2011, to
a lesser extent) (Figures 1e–1h), which can have a signifi-
cant effect on C. rostrata height and leaf and root biomass
[Kennedy et al., 2003]. Field observations also indicate that
large interannual variations in water table can affect shoot
length and density, with the shortest shoots observed in
low water years and the tallest observed in high water years
[Hultgren, 1989b].
[38] There was a stronger treatment effect on summer CH4

emissions in the later years of the experiment compared to
2008 and 2009 (Figure 3). This may indicate that the system
is approaching a steady state as residual effects of the exper-
iment implementation are no longer affecting the clipped
collars, which has been seen in other studies [e.g., Verville
et al., 1998; Riutta, 2008]. In this experiment, the treatment
difference may also have been limited in the first year after
clipping due to an increase in available substrate from
decomposing C. rostrata belowground. Sedge rhizomes start
to decompose after only 4 days under anoxic conditions
[Barclay and Crawford, 1982] and 10 to 45% of the total
mass of C. rostrata roots and rhizomes decompose during
the first 12 months after separation from the aboveground
shoots [Scheffer and Aerts, 2000]. Increased substrate avail-
ability is consistent with the high concentrations of dissolved
CH4 around the C. rostrata rooting area in the clipped plots,

especially because this trend was less apparent in the subse-
quent years of the experiment.

4.4. Carex rostrata as a Methane Transport Mechanism

[39] In July and August 2008, the clipping treatment sig-
nificantly (P< 0.05) affected the concentration of
rhizospheric dissolved CH4; CH4 concentrations more than
doubled in the clipped plots, while control-plot concentra-
tions increased by only 35%. An increase in dissolved CH4

was expected because the late summer conditions are more
favorable for methanogenesis [Treat et al., 2007], but the
magnitude of the difference implies that clipping and sealing
the C. rostrata plants had a substantial effect on the buildup
of dissolved CH4. Most likely, this indicates a disruption in
the clipped plots; if CH4 transport mechanisms were equal
between the two treatments, then the higher dissolved-CH4

concentrations in the clipped plots (Figure 2b) ought to have
resulted in larger CH4 emissions. Instead, daily CH4 fluxes
from the control plots were consistently higher across all
4 years (Figures 1a–1d, and 2a), implying that more CH4 is
transported in the presence ofC. rostrata. This is consistent with
results from other clipping experiments [e.g.,Waddington et al.,
1996] that also observed lower concentrations of dissolved
CH4 at sites with high CH4 emissions and concluded that it
was the result of the transport effect of aerenchymous vegeta-
tion. The higher dependence of CH4 flux on pore water CH4 in
the control plots compared to the clipped plots (Figure 4a) also
indicates that plant transport in these plots is likely to be
supplementing diffusion. Similarly, fluxes were typically higher
from the control plots than from the clipped plots, even when
the dissolved CH4 concentrations were similar (Figure 4a),
again suggesting a substantial effect of plant transport. Given
these data, we wanted to approximate the role of plant trans-
port in enhancing CH4 emissions from Sallie’s Fen.
[40] Methane emissions are the net result of production,

oxidation, ebullition, diffusion through the peat, and plant
transport. Some CH4 may be removed from the plots via hor-
izontal flow [Waddington and Roulet, 1997; Billett and
Moore, 2007], but that should also be consistent within a pair
and is probably very low at this site, except during large pre-
cipitation events. Enhanced CH4 production in the control
plots relative to the clipped plots is quite likely, given the la-
bile root exudates from the sedges, but does not explain why
there is more 18 cm CH4 in the clipped plots despite pre-
sumed lower production rates. The aerenchymous nature of
sedges means that higher rates of CH4 oxidation could be oc-
curring in the control plots, but given the observed strong
correlation between sedge cover and CH4 flux (Table 2), this
is most likely only a minor component of the sedge effects of
CH4 dynamics. At Sallie’s Fen, ebullition is responsible for
less than 12% of the annual CH4 emissions [Santoni et al.,
2012], ebullition rates do not correlate with sedge fractional
cover [Goodrich, 2010], and very few ebullition events occur
during daytime [Goodrich et al., 2011], meaning that ebulli-
tion is unlikely to be a major component of the measured
CH4 emissions in this study. This leaves diffusion through
the peat (in both sets of plots) and plant transport (in only
the control plots) as the likely controls on the observed treat-
ment differences in CH4 flux.
[41] By approximating the monthly diffusive fluxes from

the control collars, we estimated that 40 to 70% of the CH4

emitted from Sallie’s Fen may occur through plant transport.
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This range is comparable to that of Kutzbach et al. [2004]
who estimated plant-mediated CH4 flux to account for
66 ± 20% of total CH4 emissions. King et al. [1998] also
found that adding straw-like tubing to clipped plots increased
CH4 emissions substantially, to about half the magnitude of
the CH4 fluxes from the unclipped plots, which argues for
the importance of vegetation-mediated transport in control-
ling CH4 emissions from sedge-dominated systems. The esti-
mated transport role of C. rostrata is largest in the summer
months, but still substantial in September and October
(Figure 4b). This may again indicate the importance of the
presence of C. rostrata in controlling CH4 emissions even
during fall months when the plants are no longer actively
growing. Moore et al. [2011] suggest this may be because
the transport of CH4 through sedges can continue in cooler
months when peat and air temperature have less effect on
CH4 emissions. In addition, Carex species emit CH4 from
the plant base where leaves bundle together and thus vegeta-
tion height (i.e., the green area measurement in this study)
may not be a factor in the ability of C. rostrata to transport
CH4 [Kelker and Chanton, 1997].
[42] However, these are rough estimations and incorporate

many simplifying assumption, especially by relying on the
coarse resolution of the effective diffusion gradient, which
may be the reason our estimated effective diffusion coefficient
is several orders of magnitude larger than coefficients for CH4

diffusion in saturated peat typically reported in the literature
[e.g., Lerman, 1979; Rothfuss and Conrad, 1994; Arah and
Stephen, 1998; Clymo and Bryant, 2008]. However, Sallie’s
Fen is mainly unsaturated above 18 cm and our estimated
coefficient is closer to reported CH4 diffusion rates in air
(e.g., 1.9–2.3 × 105 m2 s�1) [Arah and Stephen, 1998;
Matsunaga et al., 1998]. Diffusion through the unsaturated
peat is also likely to be substantially affected by turbulent
mixing, which may also explain our high estimated effective
diffusion coefficient. In addition, because the clipped collars
had a significantly higher water table depth, the diffusion rates
may not actually be the same for both treatments. Nonetheless,
the strong linear correlations between 18 cm CH4 concentra-
tion and CH4 flux across an order of magnitude in each vari-
able (Figure 4a) indicate that an effective diffusion model is
plausible. These approximations imply that it is likely that a
substantial portion of the annual CH4 emissions from Sallie’s
Fen occur through plant transport and that this theory should
be further investigated, using a more detailed CH4 profile
within the peat column to accurately characterize the actual
diffusion rates within each treatment.

5. Conclusions

[43] Over a 4 year clipping experiment, we observed a
strong reduction in CH4 flux from the clipped plots.
Removing the abovegroundC. rostrata biomass caused an im-
mediate decrease in CH4 emissions that persisted for the rest of
the growing season and continued over the next 3 years of the
study. There was a strong seasonal trend in CH4 flux, with the
largest treatment effects on CH4 flux occurring in summer and
fall, suggesting that a longer summer or warmer fall could lead
to larger total CH4 emissions. Overall, we observed a strong
positive relationship between C. rostrata green area and CH4

flux indicating that the presence of C. rostrata increases CH4

emissions at Sallie’s Fen. We propose that plant transport is

the driving mechanism behind this trend and may account
for 40 to 70% of the total CH4 flux at this site, but this theory
needs further research to be conclusive. We also found a
strong correlation between air temperature and CH4 flux,
regardless of the presence of C. rostrata.
[44] Peatlands are an important source of atmospheric

CH4 and changes in these ecosystems will result in positive
or negative feedback to future climate. To have accurate
predictions, controls on CH4 emissions from peatlands need
to be thoroughly understood and implemented in biogeo-
chemical models. Models consistently predict warming for
temperate and boreal peatlands [Frolking et al., 2011],
which would potentially increase CH4 emissions if saturation
conditions do not change. Changes in seasonality, in particu-
lar, are likely to affect CH4 emissions from sedge-dominated
sites. Large interannual variability in vegetation distribu-
tion and biomass, water table depth, and temperature was
observed in our study. Overall, these data indicate the
importance of conducting experiments over a multiyear
period in order to observe the likely long-term effects on
the ecosystem, as opposed to just the initial disturbance
effects, as well as the importance of measurements that
span a range of environmental conditions.
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