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 Error estimation of bathymetric grid models derived 
from historic and contemporary datasets 
Martin Jakobsson, Brian Calder, Larry Mayer and Andy Armstrong 

Center for Coastal and Ocean Mapping, 
University of New Hampshire 

Durham, NH 03824 
 

1 Introduction 
The past century has seen remarkable advances in technologies associated with 
positioning and the measurement of depth. Lead lines have given way to single beam 
echo sounders, which in turn are being replaced by multibeam sonars and other means of 
remotely and rapidly collecting dense bathymetric datasets. Sextants were replaced by 
radio navigation, then transit satellite, GPS and now differential GPS. With each new 
advance comes tremendous improvement in the accuracy and resolution of the data we 
collect. Given these changes and given the vastness of the ocean areas we must map, the 
charts we produce are mainly compilations of multiple data sets collected over many 
years and representing a range of technologies. Yet despite our knowledge that the 
accuracy of the various technologies differs, our compilations have traditionally treated 
each sounding with equal weight. We address these issues in the context of generating 
regularly spaced grids containing bathymetric values. Gridded products are required for a 
number of earth sciences studies and for generating the grid we are often forced to use a 
complex interpolation scheme due to the sparseness and irregularity of the input data 
points. Consequently, we are faced with the difficult task of assessing the confidence that 
we can assign to the final grid product, a task that is not usually addressed in most 
bathymetric compilations. Traditionally the hydrographic community has considered 
each sounding equally accurate and there has been no error evaluation of the bathymetric 
end product. This has important implications for use of the gridded bathymetry, 
especially when it is used for generating further scientific interpretations. 

In this paper we approach the problem of assessing the confidence of the final 
bathymetry gridded product via a direct-simulation Monte Carlo method. We start with a 
small subset of data from the International Bathymetric Chart of the Arctic Ocean 
(IBCAO) grid model [Jakobsson et al., 2000]. This grid is compiled from a mixture of 
data sources ranging from single beam soundings with available metadata, to spot 
soundings with no available metadata, to digitized contours; the test dataset shows 
examples of all of these types.  

From this database, we assign a priori error variances based on available meta-data, 
and when this is not available, based on a worst-case scenario in an essentially heuristic 
manner.  We then generate a number of synthetic datasets by randomly perturbing the 
base data using normally distributed random variates, scaled according to the predicted 
error model.  These datasets are next re-gridded using the same methodology as the 
original product, generating a set of plausible grid models of the regional bathymetry that 
we can use for standard deviation estimates.  Finally, we repeat the entire random 
estimation process and analyze each run’s standard deviation grids in order to examine 
sampling bias and standard error in the predictions.  The final products of the estimation 
are a collection of standard deviation grids, which we combine with the source data 
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density in order to create a grid that contains information about the bathymetric model’s 
reliability. 

 
2 Data Description  

2.1 Implementation of the IBCAO Grid Model 
The General Bathymetric Chart of the Oceans (GEBCO) fifth-edition Sheet 5.17 
[Canadian Hydrographic Service, 1979], portraying the sea floor above 64°N, has been 
considered the standard map of the Arctic Ocean for over two decades. While this 
contour map provided a general description of major bathymetric features, evidence was 
growing to indicate that many of the smaller and scientifically significant features were 
poorly or wrongly defined.  
 Given the poor situation with the regional Arctic bathymetry maps, the International 
Bathymetric Chart of the Arctic Ocean was initiated during 1997 in St Petersburg, with 
the goal of collecting all available data north of 64°N [Macnab and Nielsen, 1999].  One 
of the major goals was to compile a regular grid model from the data collected within 
IBCAO. The IBCAO data consisted of digital information that was obtained during 
recent icebreaker and SCICEX submarine cruises and older digital information that 
consisted of recently-declassified soundings collected between 1957 and 1988 by 
submarines of the US and UK Navies, and of observations obtained from the public-
domain archives of world and national data centers.  In addition hydrographic charts and 
compilation maps, portraying depth in the form of point soundings and hand-drawn 
contours, published by the Russian Federation Navy [Head Department of Navigation 
and Oceanography et al., 1999], by the US Naval Research Laboratory [Perry et al., 
1986; Cherkis et al., 1991; Matishov et al., 1995], and by other agencies, were digitized 
using heads up digitizing techniques to supplement the original bathymetric 
measurements in the IBCAO data base.  

The IBCAO grid model also contains topography which was derived mainly from the 
USGS GTOPO30 topographic model [US Geological Survey, 1997], with the exception 
of Greenland where the topographic model developed by KMS, the Danish National 
Survey and Cadastre, was used [Ekholm, 1996]. In order to constrain the coastline the 
World Vector Shoreline (WVS) was used in all areas except Greenland and northern 
Ellesmere Island, where an updated coastline was made available by KMS.  

Initially, the original bathymetric soundings were corrected for sound velocity using 
Carter’s tables, or CTD profiles where available. Subsequently, a suite of tools and 
statistical routines based upon the Helical-Hyperspatial (HH) scheme for data encoding 
[Varma et al., 1990] was used to flag data as unusable if they were found to not 
statistically conform to nearby data. After this initial statistical cleaning all data (digitized 
bathymetric contours, land and marine relief grids, point, profile and swath observations, 
and vector shorelines) were imported into Intergraph's MGE (Modular GIS Environment) 
with projection parameters set to polar stereographic on the WGS 1984 ellipsoid, true 
scale at 75°N.  The observations along ship tracks were sub-sampled to maintain a 
minimum of 500-1000 m between every point in each track. Soundings were color-coded 
according to depth to facilitate a visual inspection of the statistical cleaning results. 
Outliers, cross-track errors, and the fit between isobaths and original observations data 
were checked during this process. Further suspicious soundings were flagged, and where 
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contours showed major discrepancies with soundings, the contours were adjusted 
manually to fit the new bathymetric track line data. 

 After editing the entire Arctic Ocean bathymetry data set, the mixture of track and 
digitized contour values were used to construct a grid with a cell size of 2.5 x 2.5-km. 
The variable density of the different components in the compilation led us to consider an 
interpolated gridding algorithm, namely the continuous curvature spline in tension 
algorithm of Smith & Wessel [1990], as implemented in the GMT package [Wessel & 
Smith, 1991]. Prior to gridding the data was preprocessed by applying a block median 
filter with a block size equal to the final grid cell spacing of 2.5 x 2.5 km. This filtering 
serves the main purpose of preventing spatial aliasing. Finally, the GMT continuous 
spline-in-tension algorithm was used with the tension (T) parameter set to 0.35 in order to 
avoid overshooting in the interpolated regularly sampled surface. The resulting grid was 
inspected visually and problems identified. For example, a common problem was in 
narrow fjords without bathymetric data points where the gridding algorithm assigned 0 m 
values; the same value as the coastline. This was controlled by manually inserting control 
contours typically representing a depth of a few meters, near the coastline, which 
conditioned the interpolation.  

A shaded relief of the entire IBCAO grid is shown in Figure 1. Further description 
about the IBCAO grid model can be found in Jakobsson [2000] and Macnab & Jakobsson 
[2000].  



 

 
 4 

 

 
 

Figure 1. A color-coded shaded relief portraying bathymetry and topography of the Arctic region created 
from the IBCAO grid model with a nominal resolution at 2500m [Jakobsson et al., 2000]. The area 
subjected to our error modeling experiment is indicated by a bold rectangle. Projection: Polar Stereographic 
with true scale at 75°N.  Datum: WGS-84. 
 
 

2.2 Experiment subset of IBCAO 
Our experiment is based on a subsection of the data used to construct the IBCAO grid, as 
shown in Figure 1.  We have chosen the area around Svalbard since it contains a cross-
section of the various régimes within the IBCAO source data, including GTOPO30 land 
data, near-shore regions, dense single-beam data, transect lines, bathymetric contours and 
control contours (Figure 2 and Table 1). There is also a significant depth range to be 
considered, due to the relatively shallow areas of the Barents Sea around Svalbard and 
the contrasting deep North Atlantic in the western part of the area where also the North 
Atlantic Spreading Ridge is coming through. We have followed the exact same 
methodology as used for the construction of the IBCAO grid model.  The data stored in 
the compilation database have been inspected, and cleaned, and if not previously adjusted 
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the depths have been corrected for sound velocity using Carter’s tables.  The resulting 
data set shows a distinct data density gradient from very dense survey data near Svalbard 
and in the south-east of the region to poorly constrained re-digitized contours in the north 
and north-east (Figure 2). 
 

 
Figure 2. Data from the IBCAO construction database used for the error modeling. This includes all data 
that falls within the bounds indicated in figure 1 and covers almost all of the component data sets used in 
the entire IBCAO grid compilation. Projection parameters as figure 1.  The key to the used color-coding of 
the source data is found in table 1. 
 
 
3 Error Model  

3.1 Methodology of Monte Carlo Simulation 
In principal, estimation of errors associated with the grid is a relatively simple matter.  
We need to gather a number of datasets for the same area (keeping track of the error 
sources in each), estimate depths in the area concerned, and then look at the variability in 
the depth estimates.  However, in the regional case the vastness of the area and the 
difficulty and expense of collecting the data precludes repeated surveys.  As an 
alternative, we must consider whether we can approximate the error estimates required 
based on the best available data, our knowledge of the likely errors involved, and a 
simulation method. 
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The Monte Carlo method [Hammersley & Handscomb 1964, Gentle 1998] is a 
numerical technique for evaluation of difficult integrals.  In many cases, integrals cannot 
be solved analytically, and in some cases not even by the usual quadrature methods 
[Press et al., 1995].  This is particularly true where the integral is over multiple 
dimensions as often happens in computational probability and physics [Brooks, 1998, 
Binder and Heerman, 1988].  In these cases, the simulation methodology of the Monte 
Carlo method is preferred. 

At its simplest, the Monte Carlo method is very straightforward.  For an integral 

( )∫=
1

0
dxxfI  (to which we can reduce any integral in one dimension with suitable 

transformations), the Monte Carlo method proceeds by refactorizing the integrand 
( ) ( ) ( )xpxgxf = , and then observing that if we interpret ( )xp  as a probability density 

function with support on ]1,0[ , then ( ) ( )dxxpxgI ∫=
1

0
 is simply the expected value of 

( )xg , ( )[ ]xgΕ .  Given a set of N samples from the probability density, then, we can 
approximate this expectation by the sample mean, 

( )[ ] ( )∑
=

≈
N

i
iXg

N
xg

1

1E  

in the usual way.  Consequently, as long as we can factorize the integrand and generate 
samples from the resultant pdf, we can approximate the integral with an error 
proportional to the number of samples used (and hence indirectly proportional to the time 
that we are willing to expend on the process).  In the simplest case, we can choose the 
uniform distribution for ( )xp , and hence ( ) ( )xfxg = ; the estimation is therefore: 

( )∑
=

≈
N

i
iXf

N
I

1

1  where ]1,0[~ UiX . 

A small subtlety of the method is that, since these integral estimates are based on a 
random dataset, they are themselves subject to variation (i.e., are random variables).  As 
usual, we must provide an estimate of this variance to complement the base estimate.  
However, since we do not normally know the error in each estimate, we are forced to 
apply the same technique again and estimate the Monte Carlo error by multiple repeated 
runs of the whole simulation.  It is important to distinguish carefully between estimated 
standard deviation of the computed bathymetry (the target of the simulation) and the 
summary of the sampling distribution of the standard deviation grids (i.e., the standard 
error of the standard deviation estimate), computed between different simulation runs.  
Although computed in a very similar fashion, the former exhibit true variation 
corresponding to the problem under investigation, while the magnitude of the latter grids 
is an artifact of the sampling approach to estimation.  The estimation of the Monte Carlo 
error is simply a quality assurance check and calibration. 

The chief difficulty with this simple method is that this Monte Carlo error reduces 
only slowly with the number of component estimates, N , and hence the method is not 
very efficient as stated.  Most improvements to the method are targeted at making the 
error shrink more quickly [Gentle, 1998]. 

In the case of estimating uncertainty in the bathymetric grid, however, the task is 
sufficiently simple that we can use a direct simulation, paying a penalty in time for 
simplicity in theory and implementation.  This simplified method is analogous to taking 
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repeated measurements in the same area; given the best data available, we generate 
synthetic (but realistic) pseudo-datasets based on our knowledge of the likely error 
sources and their magnitudes, and we then run the experiment assuming that the datasets 
are truly independent.  Given our assumptions, summary statistics generated from the 
simulations are valid estimates of the true values of error, in the same way as above. 

The first principal assumption made here is that the datasets, and the measurements 
within them, are independent of each other and that they are free of any systematic bias.  
In this case, we can use the data points given as a basis for all of the pseudo-datasets, 
perturbing about the values supplied.  In effect, we assume that the points recorded are 
unbiased estimates of the mean bathymetry and position.  Our other principal assumption 
is that the errors in location and depth are normally distributed, independent of each other 
and of each data point.  This assumption is rather more weakly justifiable, since we may 
have some systematic bias in navigation  (e.g., a mis-navigated submarine track 10km 
from the true location), or we may have some correlation between the two horizontal 
offsets.  However, such fine detail is essentially unknown and unknowable in the datasets 
we are considering, and we are forced, reluctantly, to accept this assumption in order to 
carry out the analysis. 

In a similar vein, we note in passing that this analysis does not give us any more 
insight into the error budget for the grid than a full formal error analysis would.  
However, it does provide a very simple way to carry out what would otherwise be a very 
complex computation.  Pragmatically, we trade off accuracy for tractability. 

3.2 Estimation of Errors in the IBCAO source data 
Our error modeling approach is based on an assumption of normally distributed random 
errors in the source data. In the case of bathymetric data this may be subdivided into 
errors in determining position (xy) and errors in measuring depths (z). For recently 
collected survey data an estimate of the random errors and possible constant errors 
(which then can be corrected) may be available from those who collected the data. 
However, in the case of the IBCAO source data, the majority of the data sets are historic 
and, thus, only the meta-data is available to make a realistic initial random error 
assumption. If there is no meta-data available the assigned errors must be based on a 
worst-case scenario in order to highlight this uncertainty. The most critical information in 
the meta-data is: type of positioning/navigational instrumentation, bathymetric 
instrumentation and year. Lack of other information like geodetic datum and sound 
velocity correction would also contribute to the initial error assignment. From the meta-
data the random error is estimated at a selected confidence interval, 95%. This means that 
95% of the normally distributed positions should fall within a circle with a radius of the 
assigned error. It is not a simple and straightforward task to assign an error simply based 
on the meta-data but it is the only approach possible for historic data sets. For example if 
it is found that the positions were acquired using a GPS system during year 1990 the 
random error may be in the order of ±80 m [Wells et al., 1986] whereas if the positions 
were acquired using Loran C it gets more complicated since the accuracy of Loran C 
varies to a greater extent with time and geographic location [Maloney, 1985]. Again, the 
worst-case scenario is the easiest and safest approach.  Constant errors are more 
problematic to account for in historic data sets, they may possible be distinguished 
through crossing track lines.  
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Some of the data sets within the IBCAO source data have no meta-data associated 
with them. However, in our error modeling experiment, which is focused on developing 
the modeling approach rather than producing an accurate estimate of the errors in the 
subset of the IBCAO grid around Svalbard, we have assigned somewhat arbitrarily errors 
to all data sets based on the rough classification described in Table 1. Contours are 
assumed to have the largest errors whereas the data from the Norwegian sources, which 
mainly consist of survey data, and the Oden icebreaker data collected using GPS 
positioning system is considered to have the highest accuracies. The data collected using 
submarines are considered fairly inaccurately positioned (± 5000-10000 m) due to the use 
of inertial navigational system for long periods between surface fixes. The data collected 
with the Ymer icebreaker was positioned using fixes from a Magnavox one-channel 
satellite navigational system [Eldholm et al., 1982], which we have assigned an accuracy 
on the order of ± 1 nm. The data retrieved from the NGDC data center is assigned 
common positional and depth errors. A full error estimation of the entire IBCAO grid is 
one of our future goals, which requires a large amount of time-consuming “data 
detective” work in order to find meta-data for many of the older data sets. It is then 
possible to assign errors that are more closely related to the “true errors”. 
 
Table 1. Classification of the source data shown in Figure 2 and initial assignment of standard deviation 
of errors at 95% confidence interval.  
 
Source data  xy σσσσ error (m) z σσσσ error (% depth) 
Digitized contours   
Contours drawn during the IBCAO 
project (Yellow) 

12000 5 

Bathymetry of the Franz Josef Land Area 
[Matishov et al., 1995] (Magenta) 

12000 5 

Bathymetry of the Barents  
and Kara Seas [Cherkis et al., 1995] 
(Black) 

12000 5 

Bottom relief of the Arctic Ocean [Head 
Department of Navigation and 
Oceanography et al., 1999] (Orange) 

12000 5 

Soundings   
Swedish icebreaker Oden, 1991 and 
1996 (Magenta) 

100 5 

Swedish icebreaker Ymer, 1980 (Red) 1852 5 
US and British Royal Navies submarines, 
1958-1988 (Lila) 

10000 5 

Data collected during SCICEX by USS 
Hawkbill, 1999 (Lila) 

5000 5 

Data from Norwegian sources (Black) 200 2 
Soundings obtained from the US 
National Geophysical Data Center 
(NGDC) (Magenta) 

1000 5 

Land and support data   
World Vector Shoreline (Black) 0 0 
Control contours (Red) 0 0 
GTOPO30 (Gray) 0 0 
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4 Data pre-processing and simulation 

4.1 Pre-processing  
We used the bounds indicated in Figure 1 to extract the relevant data from the IBCAO 
compilation. Data are represented as flat-file ( )zyx ,,  triples using projected coordinates 
and corrected depths. 

4.2 Dataset Simulation 
The experimental estimation of standard deviations on the grids consists of a number of 
repeated simulations.  In particular, we have to consider M sets of N grids.  We therefore 
subscript all variables nmA  or mA  as appropriate, where upper case bold letters indicate 
matrices (grids) and lower case bold letters indicate (column) vectors.  Operations on 
grids are always taken pointwise (so ( )BA F=  for some operator ( )⋅F  means 

( )ijij BA F=  ji,∀ on the domain).  Sets of variables are indicated by sans serif letters, 
e.g., ( ){ })(,,1 kYY K=Y ; when appropriate, we refer to components of a set indexed over 
N (the set of natural numbers) with an essentially arbitrary, but fixed, indexing scheme. 

Given the collection of cleaned datasets { })(,),1( sXX K=X  and a corresponding error 

model, { })()1( s,, ee K=E , [ ]T
yx iiii )(),(),()( 2

0
22 ασσ=e , we generate a pseudo-dataset nmX  

by perturbing each sounding with a random vector as follows: 
{ })(,),1( snmnmnm XX K=X  

)()()( iiinm EEEE+= XX  
[ ])(,),()( 1 iii J(i)eeeeeeeeEEEE L=  where )()( iiJ X=  

( )( ))()(,1,1diag,~)( 2 iizi jj e0MMMMeeee  
Gaussian variates are generated using the Box-Muller equations driven by a non-linear 

congruential generator that is known to have sequence length of at least 235 and produces 
equally random bits in all sections of the output word.  The uniform variates are scaled to 

)1,0[  before conversion to Gaussian distributions. 
The basic component of the simulation is a block of 100=N  pseudo-datasets, from 

which we construct a set of N grids using the same algorithm as the IBCAO compilation, 
using a mask prepared from GTOPO30 topography to constrain the standard deviation 
estimate to be zero on land.  We then compute the expectation [ ]nmm BB E=  and the 

standard deviation ( )[ ]22
mnmm BBε −= E  of this set, the latter estimating our 

confidence in the former’s depth prediction.  Computations are done directly on the grids 
using the GMT grid calculator; this avoids any conversion errors or approximations.  The 
standard deviation estimate mε  is the primary outcome of the simulation. 

To estimate the Monte Carlo error, we repeat the above basic simulation 20=M  
times.  We then compute the expectation [ ]mεε E=  and standard error estimate 

( )[ ]22 εεε −= mE  of the individual standard deviation grids, providing us with a 
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spatially localized estimate of the variability of standard deviation at each estimation grid 
point. 

 
5 Results and Discussion 

5.1 Standard Deviations in Gridding 
The standard deviation grid for a single run of the algorithm (i.e., mε ) is shown in Figure 
3.  We can visualize the error in two ways: either as true meters, or as a percentage of the 
depth estimated from the unperturbed data, X.  Based on the assumption that we are more 
interested in relative errors, especially in the near-shore region, we will concentrate 
mainly on the percentage error grid, Figure 3(B). 

 

 
 

Figure 3A: Estimated standard deviation of gridded depth based on N=100 Monte Carlo simulation runs.  
Standard deviation is depth in meters. 
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Figure 3B. Estimated standard deviation of gridded depth based on N=100 Monte Carlo simulation runs.  
Standard deviation is shown as a percentage of the depth estimated on the unperturbed grid.  The 
percentage grid gives a better feel for the errors involved, and is the preferred grid for interpretation. 
 

 
On first examination, the results appear to agree with intuition.  In regions where there 

have been rigorous hydrographic surveys (e.g., 77ºN 22º 30’E), the estimated error is 
significantly lower than regions where only a single trackline is used to constrain the grid 
(e.g., at 82ºN 5ºE).  We also see that where there are track lines, the error is lower, and 
that inshore the error is proportionately higher. 

However, comparing the grids to the source data density, we see some anomalies.  For 
example, the region near 79º 30’N 37ºE has suspiciously low error given the scarcity of 
data in the area.  We attribute this to the smoothing interpolative nature of the gridding 
algorithm and the fact that the source data in this region predominantly derives from 
contours.  That is, in flat regions with little data enclosed by contours, what we see is a 
smooth approximation between the contour limits, rather than a realistic error estimate. 

Consequently, we chose to remove from consideration areas that are equal to or 
smaller than 7500 x 7500 m that contain no soundings to prevent too many spurious 
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removals.  The resulting reduced grid is shown in Figure 4, and by comparison with 
Figure 3(B), we can see that the anomalous area described above is completely removed.  
We note in passing that some variant of a combination of sounding density and different 
resolution grids may be a way to approach a prediction of the required gridding density 
for any particular data set, a topic we are currently investigating further. 
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