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Geotail and LFM comparisons of plasma sheet climatology:

2. Flow variability

Timothy B. Guild," Harlan E. Spence,' E. Larry Kepko,' Viacheslav Merkin,'
John G. Lyon,"* Michael Wiltberger,* and Charles C. Goodrich'

Received 27 June 2007; revised 1 October 2007; accepted 18 January 2008; published 18 April 2008.

[1] We characterize the variability of central plasma sheet bulk flows with a 6-year
Geotail data set and a 2-month Lyon-Fedder-Mobarry (LFM) global MHD simulation
at two spatial resolutions. Comparing long databases of observed and simulated
parameters enable rigorous statistical tests of the model’s ability to predict plasma

sheet properties during routine driving conditions and represent a new method of global
MHD validation. In this study, we use probability density functions (PDFs) to compare
the statistics of plasma sheet velocities in the Geotail observations with those in the
LFM simulations. We find that the low-resolution model grossly underestimates the
occurrence of fast earthward and tailward flows. Increasing the simulation resolution
inherently changes plasma sheet mass transport in the model, allowing the development
of fast, bursty flows. These flows fill out the wings of the velocity distribution and

bring the PDF into closer agreement with observations.
Guild, T. B., H. E. Spence, E. L. Kepko, V. Merkin, J. G. Lyon, M. Wiltberger, and C. C. Goodrich (2008), Geotail and

Citation:

LFM comparisons of plasma sheet climatology: 2. Flow variability, J. Geophys. Res., 113, A04217, doi:10.1029/2007JA012613.

1. Introduction

[2] The Earth’s plasma sheet is an important link in the
solar-terrestrial system. As such, it has been the subject of
many investigations characterizing its average properties
[e.g., Baumjohann et al., 1989; Angelopoulos et al., 1993;
Huang and Frank, 1994; Kaufmann et al., 2004] and how
those properties vary with the incident solar wind [e.g.,
Tsyganenko and Mukai, 2003; Borovsky et al., 1998; Wang
et al., 2006] or substorm phase [e.g., Nagai et al., 1998;
Machida et al., 1999; Miyashita et al., 1999]. Since the
plasma sheet plays a significant role in transporting solar
wind plasma and energy deep into the inner magnetosphere,
understanding its velocity structure is central to character-
izing the nature of mass, momentum, and energy transport
throughout the magnetosphere.

[3] The large plasma sheet volume is relatively far from
the Earth, frustrating investigations which attempt to study
its global, time-dependent properties with orbiting space-
craft. The plasma sheet extends from nightside geosyncho-
nous orbit to many tens of Ry antisunward and covers
~30 Ry of cross-tail width. Spacecraft require long orbital
periods to reach the majority of the plasma sheet and only
sample one trajectory in time/space through its large volume
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upon each traversal. Accordingly, statistical investigations
must accumulate a global picture of the plasma sheet over
years of spacecraft orbits, at the expense of short-term
dynamics. This observational constraint will most likely
remain until the launch of a constellation-class mission to
the magnetotail, at least a decade from now by optimistic
estimates.

[4] Recent advances in the speed and scale of computa-
tional resources have recently enabled global MHD models
to reach new levels of resolution and complexity. Global
MHD models of the magnetosphere now routinely simulate
day to week-long intervals using observed solar wind
inputs, and researchers compare the simulation solutions
to in situ magnetospheric measurements. While we lack
global observational coverage of the dynamic plasma sheet,
we can use global MHD simulations to investigate the
multiscale fluid nature of plasma sheet dynamics. These
models are tools to understand dynamics, however, only to
the extent that they are successfully validated against
observations in the plasma sheet.

[5] In this study, we extend a companion work [Guild et
al., 2008] that compared the averaged Geotail plasma sheet
observations with the average behavior of an LFM simula-
tion in the plasma sheet. We refer to these long duration
time averages of plasma sheet parameters as ‘“‘climate,”
analogous with long-term average terrestrial weather pat-
terns. Climate equally refers to the underlying variability of
the parameters which contribute to those long-term aver-
ages, so in this paper we look closer at the distributions
which made up the average plasma sheet velocity compar-
isons in the work of Guild et al. [2008]. Specifically, we
compare velocity distributions observed by the Geotail
spacecraft during a 2-month interval in 1996 with the
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velocity distributions within an LFM simulation of those
same 2 months to validate the LFM global MHD model
with observations in the plasma sheet. Flow distributions
span the range of continuously evolving conditions from
typical to extreme levels of activity within the bimodal
plasma sheet [Kennel, 1995], thereby providing a rigorous
test of model performance. Velocity distributions are the
most physically meaningful measure of plasma sheet vari-
ability encompassed in the data sets used in these compan-
ion studies (compared to density, thermal energy, or thermal
pressure variability). Additionally, there already exists a
significant body of literature devoted to the analysis
methods and theories underlying flow distributions in
plasmas from which we can draw expertise or interpreta-
tion. This systematic validation effort characterizes model
strengths, suggests improvements based on model weak-
nesses, and represents an important step toward transition-
ing codes from research tools to mature, operational
forecasting models.

2. Observations

[6] We used Geotail data from the Low Energy Particle
(LEP) [Mukai et al., 1994] and Magnetic Field (MGF)
[Kokubun et al., 1994] experiments, available through the
DARTS/GEOTAIL online database, to characterize the
properties of the plasma sheet. The LEP experiment meas-
ures ions from 7 eV/charge to 42 keV/charge, and the
DARTS database provides moments of the ion distributions
at 12-s cadence. In this study we are interested in bulk
transport through the plasma sheet, so we used only ion data
from the LEP experiment as ions carry most of the mass,
momentum, and energy. The MGF experiment uses dual
three-axis fluxgate magnetometers to provide magnetic field
measurements at a 3-s cadence. We merged these data sets
by linearly interpolating to a common 12-s timescale. In
total, we used Geotail data from January 1995 through
December 2000, when Geotail was in an ~10 x 30 Rg, 5.4-
d orbit. The majority of this investigation, however, focuses
on the 2-month interval from 23 February through 25 April
1996 when Geotail predominantly sampled the premidnight
sector of the geomagnetic tail.

3. Simulations

[7] We compared the Lyon-Fedder-Mobarry (LFM) global
MHD simulation to the Geotail data described in section 2.
The LFM model solves the three-dimensional ideal MHD
equations self-consistently on a roughly cylindrical grid in
geospace, organized in stretched, spherical computational
coordinates. The simulation domain extends from about
30 Rg upstream of the Earth to ~300 Ry downstream, and
~100 Ry in both the Yy, and Zg;, directions. The model takes
observed solar wind inputs at the upstream boundary and
couples to a simple two-dimensional height-integrated iono-
spheric model at the 2.1 Rg inner boundary. A comprehensive
discussion of the LFM model is given in the work of Lyon et
al. [2004].

[8] WIND observations for the interval between 23 February
and 25 April 1996, defined the driving boundary conditions
for this LFM simulation. We show these model inputs in
Figure 1 where we plot, from top to bottom, the solar wind

GUILD ET AL.: GEOTAIL/MHD PLASMA SHEET FLOW VARIABILITY

A04217

number density (#/em®), speed (km/s), ram pressure (nP),
IMF BY,GSM (HT) and BZ,GSM (HT), and Btotal (HT) The
solar wind speed, ram pressure, B, and B, when
averaged over the entire interval, are (Vgy) = 436 km/s,
(Prar) = 2.1 nPa, (B;) = —0.48 nT, and (|B|) = 3.4 nT. We
split the 2 month duration into nine subintervals for ease of
running the simulations, and due to two WIND perigee
passes near 27 March and 18 April, marked by the large
gaps in Figure 1. Other, smaller gaps in the input time series
correspond to times between individual simulations. We set
the input By to zero in the simulation coordinates to avoid
numerical complications at the upstream boundary of the
grid. This is generally justifiable because the Xg,, field
component is not appreciably compressed across the sub-
solar bow shock and plays a minimal role in solar wind-
magnetosphere coupling [Lyon et al., 2004]. The LFM
model solves the MHD equations with an internal cadence
of ~0.2 s, but we exported the simulation magnetospheric
and ionospheric variables every ~1.5 min, sufficient to
obtain good statistics of the shortest duration velocity sig-
natures typical of the simulated plasma sheet.

4. Comparison Time Series

[9] To assess the performance of the LFM for this
interval, we flew a “virtual” Geotail spacecraft through
the simulation volume and interpolated the LFM solution at
the locations and times of Geotail’s orbit. This analysis was
facilitated with the CISM-DX software package [Wiltberger
et al., 2005]. We compare in Figure 2 our simulated time
series (in blue) with the observed Geotail measurements (in
red) throughout the 2-month interval. From top to bottom,
we plot data/model comparisons of the logarithm of plasma
number density (log(n); cm ), the bulk speed in the Xgg,
direction (Vy; km/s), the total bulk speed (|V]; km/s), the
logarithm of thermal energy (log(T); keV), and the total
magnetic field (|B|; nT). The simulation thermal energy was
derived from the pressure to density ratio. Again, the time
series gaps indicate periods which were not simulated. The
V'x component, in the second panel, most clearly shows the
satellite transition from fast negative solar wind to slow,
highly variable magnetospheric flow each time Geotail
entered the magnetosphere. The satellite traversed the
geomagnetic tail 10 times, predominantly in the premid-
night sector between 14 and 23 Ry tailward of the Earth.
During these tail passes, the satellite encountered shocked,
dense solar wind in the magnetosheath, low density tail
lobes, and the high density, hot plasma of the plasma sheet.
To better understand the characteristics of the plasma sheet,
we identified and included only observations that satisfy
criteria representative of the central plasma sheet for the
remainder of the study.

5. Plasma Sheet Selection

[10] We limited the data set selection to only plasma sheet
measurements by adopting four criteria taken to be repre-
sentative of the central plasma sheet and applying these
selection rules to both the Geotail and LFM time series
shown in Figure 2. We first included only measurements
tailward of X5y, = —10 Rj, ensuring observations within a
tail-like field configuration. Second, we required the ther-
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Figure 1. Solar wind inputs to the LFM model during the 2-month simulation.
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Figure 2. Time series of the Geotail satellite (red) and the LFM solution at the location of Geotail for
the interval 23 February 1996 through 25 April 1996.

30f9



A04217

Table 1. Central Plasma Sheet Criteria for the Geotail and LFM
Studies
Variable Value
XGsm <—10 Rg
>1 keV
B >0.5
Bz >0.5%
Bxy

dAfter Baumjohann et al. [1990].

mal energy to be larger than 1 keV. We determine the ion
thermal energy from LEP data by averaging two diagonal
components of the temperature tensor provided by the

DARTS database (k7Georir = w), and calculated the

LFM plasma thermal energy by taking the pressure to
density ratio. Third, we included only samples with a
plasma (3 > 0.5, where [ is the ratio of thermal to magnetic
pressure. This limit bounds the thermally dominated region
closest to the current sheet. Finally, we selected those
samples close to the neutral sheet as measured by the
magnetic field elevation angle, measured north or south
from the equatorial GSM plane. We include only samples
where % > 0.5, corresponding to all elevation angles >26°.
Table 1 summarizes these criteria, which are adopted from
many previous studies of the plasma sheet [e.g., Baumjohann
et al., 1990; Angelopoulos et al., 1994; Nishida et al., 1995;
Nagai et al., 1998]. By using such strict inclusion criteria, we
ensured high confidence that our plasma sheet databases
were not contaminated by inappropriate samples.

[11] Having defined the plasma sheet in our study, we used
these criteria to extract only central plasma sheet observa-
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tions from the Geotail and LFM time series in Figure 2.
According to our definition, the Geotail spacecraft encoun-
tered the central plasma sheet only 4.4% of the time, for 2.3
cumulative days over the course of the 2 month interval. The
virtual Geotail spacecraft encountered the LFM central
plasma sheet only 7.1% of the time, for a total of 3.7 d. This
underscores the reason why global plasma sheet data sets
require many years of observations to accumulate sufficient
coverage. Our plasma sheet databases included 10 indepen-
dent satellite passes, and each pass generally observed the
plasma sheet for many tens to hundreds of autocorrelation
times, found by Borovsky et al. [1997] to be ~2 min. We use
only this reduced central plasma sheet data set hereafter.

6. Comparison PDFs
6.1. PDFs for 2 Months at Geotail Location

[12] Probability density functions (PDFs) effectively cap-
ture the average values, maximum excursions, and variabil-
ity inherent in a data set. PDFs have been employed to
characterize the turbulent properties of the solar wind [e.g.,
Sorriso-Valvo et al., 1999] and of geomagnetic indices [e.g.,
Hnat et al., 2003] and to quantify the occurrence frequency
of plasma sheet flow speeds [e.g., Borovsky et al., 1997,
Angelopoulos et al., 1999]. Angelopoulos et al. [1999] used
PDFs to demonstrate that magnetotail flows exhibit inter-
mittent turbulence.

[13] In this section we use PDFs to compare statistical
properties of plasma sheet flows observed by Geotail and
simulated by the LFM. In Figure 3 we plot the PDFs of
observed (red) and simulated (blue) velocities in the Xggys
direction from —500 < Vy < +500 km/s from the 2-month
simulated interval described in section 3. We used velocities

Geotail/LFM VLX histograms

normalized to area under curve

=== Geotail 2 months
= | FM 2 months
=@= Geotail 6 years

1 i i i
-500 -400 -300 -200 -100

0 100 200 300 400 500

VLX

Figure 3. Probability density functions of 6 years of Geotail plasma sheet observations (dotted black
line), 2 months of Geotail plasma sheet observations (red line), and 2 months of LFM simulation results
at the Geotail orbit. Note the similarity between the long and short Geotail study, and the lack of fast LFM

flows.
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perpendicular to the instantaneous magnetic field (designated
V) to estimate bulk convective transport. In addition to
both 2-month PDFs, we also plot the PDF of Geotail flows
in the central plasma sheet from the entire 6-year data set as
a dotted black line. This longer data set uniformly sampled
the entire plasma sheet and included far more data points for
better statistics. The solar wind conditions during these
6 years were statistically similar to the solar wind driving the
simulation for these 2 months; this property is demonstrated
in a companion paper [Guild et al., 2008]. We therefore
consider this long data set more representative of the true
statistical nature of plasma sheet velocities, including those
larger velocities which occur at much lower frequencies. All
PDFs shown in Figure 3 are determined using 20 km/s
velocity bins and are normalized to the area under their
curves, thus representing the relative occurrence frequency of
observing flows of a certain speed in the plasma sheet.

[14] Both PDFs calculated from the Geotail observations,
the 2-month red curve and the 6-year black dotted curve,
have similar shapes. We regard the 6-year PDF as a robust
sampling of the true velocity distribution in the central
plasma sheet, and the extent of overlap indicates these
2 months reasonably approximate that true distribution.
The short-duration, 2-month PDF (red) departs from the
longer baseline behavior at fast tailward velocities, showing
very few flows below —300 km/s, with an occurrence
frequency <4 x 107> For most other speeds, the 2-month
flow distribution well represents the baseline velocity distri-
bution. The mean flows in the short and long Geotail data
sets are similar: (Veeorair, 2 mo.) = 16.1 and (Veeoraite yr) =
18.9 km/s. For comparison, weak convection (Egy = 0.1
mV/m) in the tail field ((Bz)|x=_20 = 6.3 nT) should drive
VPS ~ ESW/BZ = 16 km/s flows.

[15] The shape of the LFM PDF (blue curve) in
Figure 3 resembles the observations (red, black curves)
for slow, earthward flows, but has several distinct
differences elsewhere. The LFM velocity distribution is
significantly skewed toward earthward flows, like the
observations, but it grossly underestimates the number
of observed fast flows. Earthward flows >300 km/s and
tailward flows <—50 km/s are conspicuously absent
from the LFM PDF. The mean velocity ((V y)) of the
LFM distribution is 35.7 km/s, ~2x larger than either PDF
calculated from observations. This overestimate was found
in global average velocity maps in a companion paper
[Guild et al., 2008] and is partially explained by the LFM
overestimate of ionospheric transpolar potential. The results
in Figure 3 show the average velocity overestimate is
additionally due to the lack of appreciable tailward flows in
the LFM plasma sheet. We determine why the LFM
contains so few fast flows and even fewer tailward flows
in the following section.

6.2. Resolution-Dependent Velocity Distributions

[16] We here investigate the lack of fast plasma sheet
flows in the LFM model. In the interest of computational
feasibility, we used the lowest resolution of the LFM model
for the simulation described in this study. This low resolu-
tion led to computational cell sizes of 1 — 2 Rg in the plasma
sheet. Large cell sizes generally limit plasma gradients in
the model, leading to thicker current sheets, smaller j x B
forces, and thus slower flows. We follow this line of
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reasoning to determine how the flow distribution changes
with simulation resolution as a potential explanation of our
data/model discrepancy.

[17] We simulated a subset of our 2-month interval at
high spatial resolution to compare with the velocity distri-
bution determined with the low spatial resolution simula-
tion. The high-resolution simulation had twice the number
of computational cells in the azimuthal (0) and polar (¢)
coordinates, halving the cell size in those dimensions, while
leaving the radial cell size unchanged. Increasing the
resolution decreases the average plasma sheet cell size
in the region —30 < Xggis < —10 Rg by 50%, from 1.36 to
0.90 Rz, so we expect the high-resolution model to support
spatial gradients 50% larger as well.

[18] We simulated portions of the interval from 23
February through 22 March 1996 with the high-resolution
model, outputing simulation results every 2 min. Again,
this time resolution is sufficient to sample the smallest
duration velocity structures contained in the simulations
with statistical confidence. We simulated 21 d of the
high-resolution model in total and show the PDFs of
only those intervals common to both the low- (red) and
high-resolution (blue) simulation in Figure 4. These PDFs
are now composed of all plasma sheet velocities occur-
ring between —10 < Xgopr < —30 Rg, rather than only
those flows which intersect an orbiting spacecraft trajec-
tory. Again, the LFM plasma sheet was defined as the set
of points whose values satisfy all the criteria of Table 1
at every time step. We plot the velocity distribution
observed during the entire 6-year Geotail data set in
black for comparison, using AV = 20 km/s for each PDF
and extend the velocity limits to +1000 km/s for com-
pleteness. The average flow speed of all points in the
low-resolution plasma sheet (15.4 km/s) differs markedly
from the average flow speed along the Geotail orbit
through that simulation (35.7 km/s), signifying the im-
portance of orbital sampling when comparing temporally
and spatially averaged quantities in the simulated plasma
sheet. For the remainder of the study we compare only
entire plasma sheet average flows.

[19] The distribution derived from all velocities within
the low resolution plasma sheet (red PDF) now exhibits
earthward flows up to 500 km/s and tailward flows up to
200 km/s. These faster flows were not present in Figure 3
and were missed due to the selective sampling of the
Geotail orbit. The high-resolution PDF (blue curve)
extends to +650 and —450 km/s, well above the fastest
low-resolution speeds in each direction. Both simulated
distributions still recorded much fewer fast flows than the
observations, but increasing the resolution generated more
fast flows, especially in the tailward portion of the distri-
bution. These fast tailward flows in the high-resolution
PDF also serve to reduce the average speed from 15.4 km/s
in the low-resolution simulation to 11.3 km/s in the high-
resolution simulation. Both distributions still fall well short
of reproducing the number of very fast earthward flows and
therefore underestimate the statistical Geotail average flow
speed of 18.9 km/s. As the distribution indicates, rather
than changing the typical flow speed, increasing the
simulation resolution filled out the high-velocity tails
symmetrically, reducing the average speed. We investigate
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Figure 4. PDFs of the low- (red) and high-resolution models (blue), plotted together with Geotail data

(black).

the cause of these additional fast flows in the following
section.

7. Discussion

[20] The resolution-dependent nature of the LFM plasma
sheet transport is not surprising, as increased resolution
permits larger plasma gradients, which in turn can affect
local dynamics. We work here toward understanding the
mechanisms which add more, faster flows to the plasma
sheet, as shown in section 6.2. For more insight, we turn to
a time-dependent characterization of mass flux through a
representative simulation at both resolutions.

[21] Instead of reanalyzing the high-resolution simulation
in the time domain, we simulate a substorm which serves as a
proxy for the dynamic intervals contained within the long
simulation. Using WIND observations between 0600 and
0900 UT on 10 December 1996, we drove the substorm
simulations using the low- and high-resolution LFM model.
The high-resolution simulation was run and extensively
compared to observations by Wiltberger et al. [2000] and
yielded similar substorm onset times and magnetotail dy-
namics to in situ observations. The low-resolution simulation
was performed for this study and uses identical upstream and
ionospheric boundary conditions, restricting the only differ-
ence between comparative simulations to spatial resolution.

[22] The plasma sheet velocity PDFs for the high-
resolution substorm simulation exhibited larger earthward
and tailward fast flows in the tails of the distributions relative
to the low-resolution simulation (not shown), similar to the

long-duration PDFs in Figure 4. During the course of the
2 1/2-h substorm simulation, we recorded the average mass
flux (<p : VX> . Ups) through a20 x 10 Rg (YGSM X ZGSM)
surface centered at (—20, 0, —4) R, accounting for the offset
neutral sheet tailward of the magnetotail hinging distance in
our December simulation. We assumed the mass density (p)
consists of only protons and maintain constant surface area of
the midtail surface (0ps) when computing the mass flux. We
limited the |Ys,| extent of the midtail grid to exclude any
magnetosheath samples in our mass flux budget. Mass flux
through this midtail surface was due to average trends of
density or velocity, since the cross-sectional area remains
constant. Also, the very low density characteristic of the
lobes ensured most of the mass flux we tracked is from
transport in the high-density plasma sheet. We averaged the
(signed) mass flux through this surface at every simulation
time step, for both simulation resolutions to characterize the
plasma sheet mass transport as a function of simulation
resolution. Differences in the resolution-dependent velocity
PDFs in Figure 4 should thus be related to differences in
plasma sheet mass transport between the two simulations.
[23] After extracting the average mass flux through the
plasma sheet cross section from both simulations at every
time step, we plot the cumulative mass flux in Figure 5. We
normalize the total mass transported at the end of the
substorm, as the mass flux through an arbitrary surface is
a complex function of plasma sheet cross-sectional area and
magnetotail geometry and is not necessarily a conserved
quantity in this particular treatment. For this study, the
relevant difference between the low-resolution (blue curve)
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Normalized Mass Flux through the plasma sheet @ XGSM = —-20 during a substorm
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Figure 5. The cumulative mass flux through the X551, = —20 Ry cross section of the plasma sheet

throughout a substorm simulation for the low- (blue) and high-resolution (red) models.

and the high-resolution mass flux (red curve) is the smooth-
ness of the mass transport within the duration of the sub-
storm. The high-resolution simulation possesses a far more
variable mass transport than the low-resolution simulation.
In fact, the high-resolution plasma sheet exhibits at least
three intervals (near 0652, 0723, and 0750) of net tailward
flow through the Xgg, = —20 surface, compared to a
continuously increasing earthward mass flux in the low-
resolution simulation. Accordingly, the low-resolution sim-
ulation seems to transport mass smoothly through the
plasma sheet, whereas the high-resolution simulation trans-
ports mass in a bursty fashion.

Vx(km/s) Dec 10 08:21:430T

(@)

[24] To emphasize this mass transport difference, we
show equatorial planes of both substorm resolutions in
Figure 6. Both Figures 6a and 6b show a view of the
equatorial plane at Zsgy, = —4 Ry from the north, colored in
terms of Vy from —500 (blue) to +300 km/s (red). The Sun
is to the left, and black GSM coordinate axes have tick
marks every 10 Rz. Both velocity maps were constructed
from each substorm simulation at essentially the same time
(within 3 s of each other). Therefore, simulation resolution
is the only difference between Figures 6a and 6b, with the
high-resolution simulation (Figure 6b) containing ~4x
more cells than the low-resolution simulation (Figure 6a).

Vax(km/s) Dec 10 08:21:460T

(b)

Figure 6. Equatorial planes of the (a) low-resolution and (b) high-resolution simulation colored from

~500 (blue) to +300 km/s (red).
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We selected these frames at 0821 UT, at a time when a
significant neutral line developed in the midtail of both
simulations, thereby organizing their subsequent dynamical
evolutions. The high-resolution figure (Figure 6b) contains
three channels of >300 km/s earthward flow which are
limited in their Y5, extent. In contrast, the low-resolution
simulation developed barely discernable channels due to
their low flow speeds relative to the background flow. One
representative “flow channel” in the high-resolution simu-
lation was analyzed and discussed by Wiltberger et al.
[2000], who suggestively compared these simulated features
to bursty bulk flows [Angelopoulos et al., 1994]. These
simulated plasma sheet features typically exhibit much less
complexity than corresponding fast flows in the observa-
tions, and this comparison will be the subject of a future
publication. This inherently resolution-dependent nature of
plasma sheet transport shown in Figure 6 explains the
difference between velocity PDFs in Figure 4 and may
partially explain the lack of fast flows in the low-resolution
LFM PDF in Figure 3.

[25] The significant difference between the low- and high-
resolution simulation in Figures 6a and 6b can only be due to
simulation resolution, as mentioned above. In our case,
however, simulation resolution can mimic differing physical
processes when ideal MHD includes processes which turn on
after a certain threshold stress has been reached (e.g., recon-
nection when the current sheet thins to within a grid cell).
Although reconnection in the LFM is a purely numerical
effect, decreasing the size of simulation grid cells in the tail
can effectively decrease the minimum current sheet thickness
which is stable to reconnection, increasing the amount of
Maxwell stresses available to be dissipated through field
reconfiguration. These dynamical changes accumulate in
time throughout the simulation, to the point where each
model solution state at a certain time depends on a compli-
cated history of barely different events, yielding a diverging
solution in time. The externally driven nature of the magne-
tosphere during times of increased activity tempers these
accumulating deviations, and the results of this balance are
illustrated in Figure 6.

[26] The above analysis shows how changing only the
simulation resolution can significantly affect the realism of
the plasma sheet flows, based on a comparison with the
observed distribution of flows. The difference between the
observations and simulations, however, are not limited to
simulation resolution alone. Ideal MHD does not contain
many of the relevant physical processes known to operate in
the vicinity of thin current sheets and fast plasma sheet
flows. Regardless of the simulation resolution, it likely does
not realistically model the magnetic reconnection rate, nor
does it include nonfluid dissipation or kinetic effects asso-
ciated with reconnection. We can only quantify the effect of
missing physics in the model when global simulations are
“grid converged,” or reach a solution which does not
change with spatial resolution. The simulations presented
here are not grid-converged, and we will investigate this
further in a separate study.

8. Summary and Conclusions

[27] This study represents a new approach to global MHD
model validation: using a long-duration simulation to test
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the statistical properties of the model against the statistical
properties of observations in the plasma sheet. We com-
pared bulk flow variability in the plasma sheet using a 6-year
baseline of Geotail observations and 2 months of LFM
simulations. Such long-duration simulations provide rigor-
ous tests of global MHD models during routine conditions,
and provide insight into systematic discrepancies uncovered
in the comparison.

[28] We used probability density functions to characterize
and compare the LFM plasma sheet flow variability with
that observed by Geotail. In a direct comparison along the
Geotail orbit, we found the lower-resolution LFM model
grossly underestimates earthward flows >300 km/s and
tailward flows <—100 km/s. The comparison improved
significantly with increased simulation resolution, as the
high-resolution model inherently transported mass through
the plasma sheet via fast, bursty flows. This was likely due
to better resolved thin current sheets which possessed
greater localized Maxwell stresses capable of generating
faster localized flows. These fast flows brought the velocity
PDFs into closer agreement with the observations by
extending the wings of the velocity distribution but were
insufficient to completely resolve the discrepancy. Further
investigations of grid convergence in global MHD models
are outside the scope of this work, but will be a target of a
future study.

[29] Acknowledgments. TBG would like to acknowledge useful
discussions with M. Freeman, J. Hughes, J. Raeder, T. Nagai, and T. Mukai.
Geotail magnetic field and plasma data were provided by T. Nagai and
T. Mukai, respectively, through DARTS at the Institute of Space and
Astronautical Science, JAXA in Japan. We would also like to thank K.
Ogilvie and R. Lepping for the plasma and magnetic field data from the
WIND satellite, obtained via the Coordinated Data Analysis Web site. The
simulations were performed on Boston University and NCAR computational
resources. This material is based upon work supported in part by the
National Science Foundation under grant DGE-0221680 and GEM grant
ATM 0602708, and in part by CISM, which is funded by the STC Program
of the National Science Foundation under agreement ATM-0120950.

[30] Wolfgang Baumjohann thanks Zoltan Voros and another reviewer
for their assistance in evaluating this paper.

References

Angelopoulos, V., et al. (1993), Characteristics of ion flow in the quiet state
of the inner plasma sheet, Geophys. Res. Lett., 20, 1711—-1714.

Angelopoulos, V., et al. (1994), Statistical characteristics of bursty bulk
flow events, J. Geophys. Res., 99, 21,257—-21,280.

Angelopoulos, V., T. Mukai, and S. Kokubun (1999), Evidence for inter-
mittency in Earth’s plasma sheet and implications for self-organized cri-
ticality, Phys. Plasmas, 6, 4161—4168.

Baumjohann, W., G. Paschmann, and C. Cattell (1989), Average plasma
properies in the central plasma sheet, J. Geophys. Res., 94, 6597—6606.

Baumjohann, W., G. Paschmann, and H. Luhr (1990), Characteristics of
high-speed ion flows in the plasma sheet, J. Geophys. Res., 93,
3801-3809.

Borovsky, J. E., R. C. Elphic, H. O. Funsten, and M. F. Thomsen (1997),
The Earth’s plasma sheet as a laboratory for flow turbulence in high-
[beta] MHD, J. Plasma Phys., 57, 1-34.

Borovsky, J. E., M. F. Thomsen, and R. C. Elphic (1998), The driving of the
plasma sheet by the solar wind, J. Geophys. Res., 103, 17,617—17,640,
doi:10.1029/97JA02986.

Guild, T., H. Spence, L. Kepko, V. Merkin, J. Lyon, and C. Goodrich (2008),
Geotail and LFM comparisons of plasma sheet climatology 1: Average
values, J. Geophys. Res., 113, A04216, doi:10.1029/2007JA012611.

Hnat, B., S. C. Chapman, G. Rowlands, N. W. Watkins, and M. P. Freeman
(2003), Scaling in long term data sets of geomagnetic indices and solar
wind € as seen by WIND spacecraft, Geophys. Res. Lett., 30(22), 2174,
doi:10.1029/2003GL018209.

Huang, C., and L. Frank (1994), A statistical survey of the central plasma
sheet, J. Geophys. Res., 99, 83-95.

8 of 9



A04217

Kaufmann, R. L., W. R. Paterson, and L. A. Frank (2004), Magnetization
of the plasma sheet, J. Geophys. Res., 109, A09212, doi:10.1029/
2003JA010148.

Kennel, C. F. (1995), Convection and Substorms: Paradigms of Magne-
tospheric Phenomenology, Int. Ser. Astron. Astrophys., vol. 2, Oxford
Univ. Press, New York.

Kokubun, S., T. Yamamoto, M. Acuna, K. Hayashi, K. Shiokawa, and
H. Kawano (1994), The Geotail magnetic field experiment, J. Geomagn.
Geoelectr., 46, 7-21.

Lyon, J. G., J. A. Fedder, and C. M. Mobarry (2004), The Lyon-Fedder-
Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos.
Terr. Phys., 66, 1333—1350, doi:10.1016/j.jastp.2004.03.020.

Machida, S., Y. Miyashita, A. Ieda, A. Nishida, T. Mukai, Y. Saito, and
S. Kokubun (1999), GEOTAIL observations of flow velocity and
north-south magnetic field variations in the near and mid-distant tail
associated with substorm onsets, Geophys. Res. Lett., 26, 635—638,
doi:10.1029/1999GL900030.

Miyashita, Y., S. Machida, A. Nishida, T. Mukai, Y. Saito, and S. Kokubun
(1999), GEOTAIL observations of total pressure and electric field varia-
tions in the near and mid-distant tail associated with substorm onsets,
Geophys. Res. Lett., 26, 639—642, doi:10.1029/1999GL900031.

Mukai, T., S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya,
T. Obara, M. Ejiri, and A. Nishida (1994), The low energy particle
(LEP) experiment onboard the Geotail satellite, J. Geomagn. Geoelectr.,
46, 669—692.

Nagai, T., et al. (1998), Structure and dynamics of magnetic reconnection
for substorm onsets with Geotail observations, J. Geophys. Res., 103,
4419-4440, doi:10.1029/97JA02190.

Nishida, A., T. Mukai, T. Yamamoto, Y. Saito, S. Kokubun, and K. Maezawa
(1995), GEOTAIL observation of magnetospheric convection in the distant

GUILD ET AL.: GEOTAIL/MHD PLASMA SHEET FLOW VARIABILITY

A04217

tail at 200 Rz in quiet times, J. Geophys. Res., 100, 23,663—-23,676,
doi:10.1029/95JA02519.

Sorriso-Valvo, L., V. Carbone, P. Veltri, G. Consolini, and R. Bruno (1999),
Intermittency in the solar wind turbulence through probability distribu-
tion functions of fluctuations, Geophys. Res. Lett., 26, 1801—1804,
do0i:10.1029/1999GL900270.

Tsyganenko, N. A., and T. Mukai (2003), Tail plasma sheet models derived
from Geotail particle data, J. Geophys. Res., 108(A3), 1136, doi:10.1029/
2002JA009707.

Wang, C.-P., L. R. Lyons, J. M. Weygand, T. Nagai, and R. W. McEntire
(2006), Equatorial distributions of the plasma sheet ions, their electric and
magnetic drifts, and magnetic fields under different interplanetary mag-
netic field B. conditions, J. Geophys. Res., 111, A04215, doi:10.1029/
2005JA011545.

Wiltberger, M., T. I. Pulkkinen, J. G. Lyon, and C. C. Goodrich (2000),
MHD simulation of the magnetotail during the December 10, 1996,
substorm, J. Geophys. Res., 105, 27,649-27,664, doi:10.1029/
1999JA000251.

Wiltberger, M., R. S. Weigel, M. Gehmeyr, and T. Guild (2005), Analysis
and visualization of space science model output and data with CISM-DX,
J. Geophys. Res., 110, A09224, doi:10.1029/2004JA010956.

C. C. Goodrich, E. L. Kepko, J. G. Lyon, V. Merkin, and H. E. Spence,
Center for Space Physics, Boston University, Boston, MA 02215, USA.

T. B. Guild, Space Sciences Department/Chantilly, The Aerospace
Corporation, 15049 Conference Center Drive, CH3/210, Chantilly, VA
20151-3824, USA. (timothy.guild@aero.org)

M. Wiltberger, High Altitude Observatory, National Center for Atmo-
spheric Research, 3450 Mitchell Lane, Boulder, CO 80301, USA.

9 0of9



	Geotail and LFM comparisons of plasma sheet climatology: 2. Flow variability
	Recommended Citation
	Authors

	Geotail and LFM comparisons of plasma sheet climatology: 2. Flow variability

