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Fig. 1. Packaged ASIC, APD array and scintillating fiber bundles.

 
Abstract-- We report on the development of custom front-end

electronics for use with avalanche photodiode (APD) arrays as
part of a NASA technology study for the readout of scintillating
plastic fibers.  APD arrays featuring 64 1 mm square pixels are
used.  We demonstrate that a pixel of these APD arrays coupled
to relatively thin (0.25 mm) and short (15 cm) scintillating
plastic fibers can be used to detect and measure the tracks of
even minimum ionizing particles (MIPs).  An application-
specific integrated circuit (ASIC) implementation of the
electronics is required to produce a detector sufficiently
compact for practical use in a flight experiment featuring many
thousands of channels.  This paper briefly describes the detector
concept and performance and presents the design and
performance of a four-channel prototype ASIC fabricated using
the 0.35 micron TSMC process.
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I. DETECTOR CONCEPT AND DEMONSTRATION

This development effort focuses on the SOlar Neutron
TRACking experiment (SONTRAC). The SONTRAC detector
measures the direction and energy of incident 20 to 250 MeV
neutrons by recording the tracks of the ionizing recoil protons
in a closely packed bundle of scintillating plastic fibers.  For
proton tracking at 20 MeV SONTRAC requires scintillating
plastic fibers ≤0.25 mm thick.  The scintillating fiber and
APD array combination is also under study for application in
high energy gamma-ray telescopes that track minimum-
ionizing electron-positron pairs. Reports on the SONTRAC
detector and on the planar processed APD arrays used here were
presented previously [1]-[3].

Fig. 1 shows a photograph of a prototype APD array and
two small bundles of closely packed scintillating plastic fibers
used in this study. The packaged ASIC is shown at the left.
The windowless APD array (center) is bonded to a ceramic
carrier with the signal leads emerging from the bottom and
fanned out to the pads of a PGA adapter for insertion into the
test box. Both the APD pixels and the scintillating fibers are
formed in 8×8 arrays.  A plastic cookie and collar (lower right)
are used to match and align the fibers with the 1.27 mm pitch
APD pixels. Fibers with square cross sections of 0.25 mm
(left) and 0.75 mm (right) were used in this study.

Two sets of data were collected to demonstrate the
performance of the scintillating fiber/APD detector for the
SONTRAC application and to help define specifications for
the ASIC: 1) 65 MeV protons incident on 0.75 mm fibers at
room temperature and 2) Beta particles from a 90Sr source
incident on 0.25 mm fibers at -32°C. These measurements
were conducted by the University of New Hampshire (UNH)
using commercially available electronics.

A bundle of 0.75 mm square fibers with APD array readout
was exposed to a beam of 65 MeV protons to demonstrate
proton track recognition performance at room temperature.
Aluminum attenuators were placed between the beam and the
fibers to provide lower energy protons to simulate the end-of-
track signal. Fig. 2 shows a composite of measured and
simulated results.  Note that pulse height resolution is
adequate for recognition of the Bragg peak near the end of the
ionization track as required to determine proton direction.
Note also that the measured peak widths exceed those of the
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Fig. 2. Composite of measured (lines) and simulated (dots) data showing APD response to a range of
proton interaction energies in 0.75 mm scintillating fibers.  The measurements were made at room
temperature.

simulated ionization losses.  This excess noise effect derives
from a statistical distribution in the APD gain for each
photoelectron [4].
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Fig. 3. Scintillating fiber / APD response to minimum ionizing particles
measured at -32°C.

Fig. 3 shows the APD response to scintillations in a 0.25
mm square, 15 cm long fiber.  The multi-clad fibers were
specially formulated by Saint-Gobain using a 3HF dye
concentration appropriate to the fiber dimensions and white
EMA.  A Mylar reflector on the far end of the fiber was
employed to enhance light collection.  The APD was cooled to
-32° C and operated at a gain of 1300. Cooling reduces APD

leakage current and associated noise and
permits the use of higher APD
operating gains. With the trigger
threshold set equivalent to ~4 primary
electrons the dark count rate was less
than 20 triggers/s.  The fiber was
exposed from the side to beta radiation
from a 90Sr beta source (Emax = 2.3
MeV).  Fig. 3 shows the dark count
spectrum as well as that of the fiber
exposed to room background and to
this source.  

We estimate that 50 photoelectrons
are created in the APD for a minimum
ionizing particle (MIP) traversing the
0.25 mm thickness of the scintillating
plastic fiber. Electronic noise (FWHM)
was measured to be equivalent to 3
primary electrons (3900 electrons at
APD output) with a test pulse (not
shown). We estimate that the
scintillation signal in a fiber / APD
pixel from a recoil proton at the top
end of SONTRAC's energy range (250
MeV) would be ~2 MIPs or 100

photoelectrons.  The maximum signal, at the end of a proton
track, would be ~46 MIPs or 2300 photoelectrons.

These results demonstrate the ability of the scintillating
fiber / APD combination to detect and locate the tracks of even
minimum ionizing particles and to determine the direction of
protons as required for SONTRAC.  

In addition to these demonstrated capabilities, the APD
ASIC readout electronics for SONTRAC must be compact and
low power level to serve the approximately 100,000 closely
packed scintillating fiber channels composing a flight detector.

II. ASIC REQUIREMENTS, PROTOTYPE DESIGN AND STATUS

The prototype APD ASIC for SONTRAC was designed as a
tiny chip featuring four self-triggering channels and sparse
readout.

A. Summary of Requirements and Status
Table 1 lists important requirements of the prototype ASIC

and summarizes the performance status.

B. Design
The detailed design and simulation of the prototype APD

ASIC was conducted at Oak Ridge National Labs (ORNL).
Fig. 4 is a block diagram of the ASIC.  Fast (<10 ns) signals
are presented to the ASIC from the pixels of an APD array.
The ASIC has multiple channels each consisting of a charge-
sensitive preamplifier, shapers, discriminator and associated
controls.  The prototype ASIC has four channels; ultimately,
64 will be needed to match each 8×8 APD array.  

0-7803-7636-6/03/$17.00 ©2003 IEEE. 107
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Fig. 4.  SONTRAC prototype ASIC block diagram.

TABLE I

PROTOTYPE ASIC REQUIREMENTS AND PERFORMANCE STATUS

Item Requirement or Goal Status
Charge sensitive
preamplifier, 2 stage
shaping

1 per APD pixel.  4
channels on prototype
ASIC.

4 ch., incl. 1 spy ch.
Spy ch. not working

Range of input signals
(low gain setting)

5 x 103 to 1 x 106 electrons
(0.8 to 160 fC)

Measured linear to
180 fC

Range of input signals
(high gain setting)

1 x 103 to 1 x 105 electrons
(0.16 to 16 fC)

Measured linear to
25 fC.

Trigger and trigger
walk

Self-triggering on first
(fast) gain stage. Walk
<100 ns across dynamic
range

Trig. & walk
verified only in 40
to 160 fC range.

Peaking times: (2
stages)

1st: 50-100 ns, 2nd: ~ 150
ns, combined: 200 ns

Measured
combined= 610 ns.

Sample and hold 1 per pixel Verified
Analog MUX Common Verified
Readout discriminator After mux, allows sparse

readout. Adjustable
threshold

Verified

Channel enable (1 per
pixel)

Digital bit to
shutdown an
individual channel

Verified

Pulse heights Serial readout of all
channels exceeding
readout threshold

Verified

Noise <2000 electrons rms 1850 electrons rms
Threshold Adjustable down to 5000

electrons (0.2 MIP at APD
gain 500)

Discriminator not
working <640,000
electrons

Power consumption < 1 mW/channel <2 mW/channel.
Includes per chip
overhead

Signal coupling and
APD leakage current

DC coupling. Tolerant to
leakage up to 100 na

Tested okay up to
80 na.

Input protection (direct
detection of proton and
APD breakdown

No damage to from input
pulse <1010 electrons or
APD pixel breakdown

Verified

Gain variation among
channels

< 5% Verified (spy ch.
not working)

Cross talk for full scale
pulse

< 5% < 2%

Temperature
coefficient of gain < 0.1%/°C < 0.2%/°C
Sparse readout Readout discriminator Verified

The operation of one channel is as follows.  Pulses
produced by an APD pixel are integrated using a charge-
sensitive preamplifier and then shaped in two stages.  A
discriminator following the first shaping stage has a
programmable threshold and is used to detect the leading edge
of pulses.  Its output is logically OR’ed with that of all other
discriminators, and that result is sent to the system-level
trigger logic.  The second shaping stage passively filters the
pulse and increases the peaking time to approximately 200 ns.
The sample-and-hold circuit, controlled by the external trigger
logic, holds the peak of this signal. A key feature of this
design is that all pixels are sampled simultaneously and held
as analog values.  Once an event has triggered the system, the
readout phase starts.  The system controller, which is not part
of the ASIC, uses the multiplexer to sequentially send the
output of each sample-and-hold to the analog output and to the
readout discriminator.  If the signal is above the threshold of
the readout discriminator, then it is digitized by the ADC, but
if is below the threshold, the system controller skips digitizing
that channel and proceeds to readout the next one. The
prototype uses an off chip ADC but this function would be
moved on chip for handling large arrays.

The preamplifier and shapers are designed to operate on less
than 0.5 mW and to have no more than 500 electrons (rms)
noise for a 2 pF detector.  The charge sensitive preamplifier
has a gain of 5mV/fC and is followed by a programmable
voltage gain stage that does double duty as the first shaping
stage.  Gains of 1.6V/V (low gain setting for the bigger test
pulses) or 12V/V (high-gain setting for the actual charges
expected) are possible.  The first pulse shaper is approximately
CR-RC with a peaking time of approximately 70 ns.  

To save power, a passive shaper is used for the second
stage.  The passive shaper consists of a simple RC filter with
the C being part of the sample and hold, which is an analog
memory [5]. The nominal peaking time is 220 ns when
processing the pulse developed by the first shaping stage. The

first pair of switches  (Fig. 5) is opened to
allow capturing the peak (hold mode).  The
second pair of switches is normally open and
is closed to allow reading of the held peak.
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Reset
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Fig. 5.  Analog memory.

In an array detector that is designed to
capture multi-channel, simultaneous events, it
is possible to combine information from
several channels in real time and to use that
information to trigger sampling of all
channels.  By combining the information and
not sampling any channels unless the
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predetermined conditions are met, only events that are
potentially of interest are captured, and the probability of the
event being interesting is increased.  An additional benefit of
this type of triggering is the sampling of channels that would
have signals insufficient to self-trigger.  

For SONTRAC, we can operate on the assumption that
events of interest will have a proton end-of-track (Bragg peak)
signal in at least one channel.   Since this is a large signal, it
will be well above the noise and relatively easy to
discriminate.  The basic idea is to set the discriminator
threshold to a level that is a relatively small fraction of the
end-of-track signal, but well above the noise.  This should
give a time mark (logic pulse) delayed by a small fraction of
the first shaper peaking time (150ns).  The outputs of all the
discriminators on a single chip are OR’ed together and sent to
the detector trigger logic (which might OR all chip OR-
outputs together.) to produce a system trigger.  The system
trigger would be an input to the chip and would be delayed to
cause the sample-and-hold circuit to go into hold mode just as
the output of the second shaper peaks.
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Microcontroller
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Fig. 6. APD test fixture.

III. ASIC TEST CONFIGURATION

The ASIC test apparatus was designed and built at UNH.
Fig. 6 illustrates the APD ASIC test setup.  All functions
shown except for the HV supply and the pulse generators are
enclosed in one test fixture. The test fixture supports an APD
array and four prototype ASIC chips for readout and permits
external adjustment of key biases and shaping parameters as
well as control of the discriminator levels and implementation
of the external, system-level, trigger.  Test pulses can be
applied independently to each channel and the performance at
important nodes of the circuit can be examined for the
prototype chip’s spy channel.   The test fixture fits into an
environmental chamber for cooling.

As problems were encountered with the ASIC's spy channel
and fast trigger circuit, tests with the prototype ASIC have
been limited to the stimulus of the APD with a pulsed light
source and to the ASIC preamp with a test pulse generator.  

IV. APD ASIC TEST RESULTS

Testing of the prototype ASICs was conducted at UNH.
Tests of the fast trigger circuit were performed at ORNL.

A. Charge Gain, Linearity and Dynamic Range
The charge gain was measured by using a known external

test capacitance. The external test capacitor was mounted with
ground plane shielding to minimize any stray coupling into
the preamp input lead. The capacitor has a 10% tolerance and
the input voltage was measured to about 5%. The test board
has an internal test pulse wired directly to the ASIC pins. The
coupling from this input into the preamp is dominated by the
pin-to-pin capacitance of the ASIC packaging so its value isn't
well known. The external capacitor was used to calibrate this
input.

The pulse height peak channel was recorded for several
different test pulse voltages using the external and internal test.
The internal test matches the external one if you assume a
capacitance of 1.93pF. This is a reasonable value for pin-to-pin
coupling in this setup.

The data (Fig. 7)
shows a linear response
for the high gain range
in the 6 to 25 fC range.
The response to test
pulses changes slightly
with the APD detector
connected and biased.
The low gain range
appears to have
somewhat worse
linearity than the high
gain range (not shown).

B. Pulse Shaping
Fig. 8 illustrates the pulse shaping as measured by varying

the delay between the externally generated test pulse and the
hold signal applied to the ASIC.  The measured peaking time,
610 ns, is triple the 200 ns design goal. Some of this
discrepancy has been accounted for by measuring the value of
the resistor in
the second stage
shaper. It
measures 373
kΩ ,
considerably
more than the
217 kΩ  value
given by the
layout/extraction
tool. With this
measured value we should get about 373 ns for the peaking
time.  Further study is required to understand the remaining
causes of this discrepancy.

0 10 20 30 40
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APD at 1500V

no detector

Fig. 7. Charge gain and linearity
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Fig. 8. Pulse shaping.
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C. Trigger
We were only able to measure performance of the internal

fast trigger function for very high discriminator level settings
and large input pulses in the low gain mode. The delay
between the input and the trigger output was about 40ns vs.
20-30ns expected from the simulation. We verified that the
trigger walk meets its design specification for the 40 fC to 160
fC portion of its dynamic range.

Laboratory tests suggest that the problem with the
discriminator is inadvertent feedback. When the discriminator
fires, the logic output feeds back to an earlier stage and adds to
the signal, causing the discriminator to fire again. This may
have been avoided had we made the trigger output a current
mode or low voltage differential
output.

D. Noise and Optimum
Operating Conditions
Fig 9 shows the measured

electronics noise width of an
ASIC channel. The amplifier
noise is 0.3fC rms with no
detector and increases with
increasing APD bias. This
increase is due to APD dark
current noise and can be reduced
by cooling the APD. Operation
at 1700V, 25°C corresponds to a
gain of 400 and a dark current of
80nA.

Fig. 10 shows the dark noise and response of an APD pixel
/ ASIC channel to a calibrated pulsed light source measured
with the APD gain set at 450 and at two operating
temperatures: 25°C and 0°C.  The lower end of light pulse
intensity, 50 photoelectrons, was chosen to reflect the
scintillation signal expected from a minimum ionizing particle
(1 MIP).

Note that the
response to the
light pulses is
significantly
broader than the
electronics
noise. Again,
this is mostly
due to
statistical gain
variation in the
APD device [4].
The measured
APD gain
distributions are
roughly +-25%.
This percentage
width is

relatively independent of bias and temperature. It improves
somewhat at lower temperatures and broadens significantly
when the APD is run near its maximum gain.

An APD gain of around 450 provides the best separation
between the dark noise and the minimum signal at room
temperature. Increasing the gain beyond this point broadens
both the dark current peak and the minimum signal peak.
Cooling the APD decreases the dark current noise, which
results in less overlap. This will permit the setting of a lower
readout discriminator threshold.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated that the scintillating fiber / APD
detector generates ample signal for the SONTRAC application
when operated at -32°C and an APD gain of 1300.  Further
analysis and measurements suggest that a sufficient signal to
noise ratio for the detection of minimum ionizing particles in
0.25 mm fibers would be achieved at 0° C and with APD gain
set well below breakdown.

We have designed, fabricated and tested first prototype
ASIC devices for readout of APD arrays.  While the self-
triggering feature of these chips is not working for small
signals other important performance parameters have been
verified to be in compliance with the requirements.  These
include charge sensitivity, noise and linearity across the
specified dynamic range, tolerance to APD breakdown and
compatibility with high leakage currents facilitating testing at
room temperature.

Further study is required to understand the larger than
expected peaking time. Further study and redesign of the
ASIC fast discriminator circuitry are required to address the
inadvertent feedback problem.  We will seek new funding to
address these issues and extend the development to include
compact APD/ASIC packaging as would be required by
SONTRAC and other many-channel instruments.
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