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Abstract-- We report progress in the study of CZT strip

detectors featuring orthogonal coplanar anode contacts. The
work includes laboratory and simulation studies aimed at
optimizing and developing compact, efficient, high performance
detector modules for 0.05 to 1 MeV gamma radiation
measurements.  The novel coplanar anode strip configuration
retains many of the performance advantages of pixel detectors
yet requires far fewer electronic channels to perform both 3-d
imaging and spectroscopy.

We report on studies aimed at determining an optimum
configuration of the analog signal processing electronics to
employ with these detectors. We report measurements of energy
and spatial resolution in three dimensions for prototype 5 and
10 mm thick CZT detectors using a set of shaping and summing
amplifiers.

I. ORTHOGONAL COPLANAR ANODE STRIP DETECTORS

We have been studying a novel CZT detector configuration
as an alternative to pixel and double-sided strip detectors [1]-
[3].  Figure 1 illustrates the anode surface contact pattern and
the readout of an 8×8 orthogonal coplanar anode strip detector.
As with double-sided strip detectors, this detector requires
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simultaneous readout of both row and column signals.  Each
row takes the form of N discrete interconnected anode pixel
electrodes while each column is a single strip electrode. (Fig.
1).  The opposite surface, not shown, has a single uniform
cathode electrode. The anode pixel contacts, interconnected in
rows, are biased to collect the electron charge carriers.  The
orthogonal anode strips, surrounding the anode pixel
electrodes, are biased between the cathode and anode pixel
potentials.  The strips register signals induced by the motion
of electrons as they migrate to the pixels.  Since electrons are
much more mobile than holes in CZT, anode signals from
photon interactions at all depths in the detector are detected,
whereas with double-sided detectors hole trapping may
attenuate or quench any cathode signal. The coplanar approach
permits thicker, more efficient CZT imaging planes than are
practical with double-sided strip detectors, extending the
effective energy range to higher energies.  In addition, more
compact packaging is possible since all imaging contacts and
signal processing electronics connections reside on one side of
the detector.

800 µm

600 µm

200 µm

200 µm

1000 µm

1000 µm X

Y

Z

Fig. 1. Contact geometry and read out of the orthogonal coplanar anode
design. Strip columns (X) are read out on the bottom. Pixel rows (Y) are read
out on the right. The gold contact pattern dimensions shown here in grey
correspond to those of our prototype assemblies.  

Prototype detectors have been fabricated using material from
both eV Products and Yinnel Tech, Inc. The CZT materials
were processed and patterned by eV Products.  Polymer flip-
chip bonding was used to form the electrical and mechanical
connection of each patterned CZT substrate to its ceramic
carrier. The result is a rugged detector module assembly that
involves no wire bonds to the CZT anode surface [4].   Fig. 2
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shows photographs of two detector modules: Table 1 further
identifies the prototype modules used in this study.

Fig. 2. Prototype detector modules: 5 mm thick (left), 10 mm thick (right).

TABLE I
PROTOTYPE DETECTOR MODULES

CZT thickness Material

Manufacturer

Assembly Date UNH ID#

5 mm eV Products June, 1999 UNH-EV-3

5 mm eV Products June, 1999 UNH-EV-4

5 mm Yinnel Tech. Dec, 2001 UNH-Y-5

10 mm eV Products Dec, 2001 UNH-EV-11

10 mm Yinnel Tech. Dec, 2001 UNH-Y-2

II. MEASUREMENT SETUP

Fig. 3 shows a block diagram of the signal processing.  
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Fig. 3. Measurement setup.

The detectors were plugged into a custom test board for bias
and readout of the charge signals with discrete preamplifiers
(eV-5093). A strip sum signal is formed from the eight strip
preamp outputs using a custom summing amplifier in the test
box.  The signal processing and data acquisition used NIM,
CAMAC and VME electronics. Typical bias levels for the
electrodes are shown for each detector thickness.  Each charge
collecting pixel row signal was split into a fast and a shaped
channel.  The fast pixel row channels were used to trigger
event data acquisition.  Any pixel row signal above its
discriminator level will gate the peak sensing ADC.  The peak

level of 19 shaped signals (8 pixel rows, 8 orthogonal strips,
cathode, strip sum and guard ring) was recorded for each
triggered event.  Note that different shaping times and
polarities are selected for the various signal types.

A. Measurement of Energy and the Y-Coordinate
The small, charge collecting pixel row signals provide the

best signal to noise ratio.  As such they were used as the event
trigger (fast channel) and to determine the energy and the Y-
coordinate (1 µs shaping) of the photon interaction location.

B. Measurement of the X-Coordinate
The strip signals were used to measure the X-coordinate of

the photon interactions. The strip signal is generally bipolar
and ranges in amplitude between 25% and 40% of the pixel
signal. Ideally, the strips collect no charge, but, due to their
size and proximity to the pixels, they do register the motion of
charge in the detector and, specifically, of electrons as they are
collected on the pixels. Fig.4 (left) shows simulated strip
signals for several interaction depths in a 5 mm thick detector
and illustrates several signal features.  Fig. 4 (right) shows the
relative signal to noise performance expected for several
candidate shaping options. Note that while the strip signal
shape changes significantly with the interaction depth, its
negative "edge", as measured with 200 ns shaping, is present
with reasonable signal-to-noise for all interaction depths. We
used this shaping and converted the peak height of the second
lobe of each shaped bipolar pulse (Fig. 3). These strip signal
amplitudes were analyzed to determine the X-coordinate for
each event, with the strip nearest the interaction registering the
largest signal.
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Fig. 4. Features of strip signals (simulated) at various depths (left).
Simulated signal-to-noise ratio (relative units) vs. interaction depth for three
signal processing options.

C. Measurement of the Z-Coordinate, Interaction Depth
Two independent measurements of the Z-coordinate were

performed using methods incorporating the cathode and strip
sum signals (1 µs shaping, Fig. 3).  This shaping for the strip
sum signal is used to attain a measure of the depth-dependent
residual strip signal as shown in Fig. 4.

III. PERFORMANCE

A. Spectroscopy
A single pixel response to photons in the energy range from

14 to 662 keV is shown in Figure 5.  These data were
collected in June 2002 using detector UNH-EV-4. This
performance is similar to that recorded in the initial testing of
this detector in 1999 [1].

0-7803-7636-6/03/$17.00 ©2003 IEEE. 469



Fig. 5. Single "pixel" response across the energy range from 14 to 662
keV with 5 mm thick detector UNH-EV-4. Calibration sources: 241Am (top),
57Co (center), 137Cs (bottom).

Fig. 6. 10 mm thick detector UNH-EV-11 response to 662 keV photons at
different interaction depths: Z=0-4.5 mm (top), 4.5-9 mm (middle), and 9-10
mm (bottom).

0-7803-7636-6/03/$17.00 ©2003 IEEE. 470



Fig. 7. Energy resolution distribution at
122 keV for the 64 pixels of four prototype
detectors (56 pixels are shown for UNH-Y-
2, bottom panel).

Fig. 9. Measurement of spatial resolution in
Z. Illumination from the Y=0 side through a 0.4
mm wide slit at Z=3.8 mm.

The response to 662 keV photons from a 137Cs source of 10
mm thick detector UNH-EV-11 is shown in Fig. 6. The effect
of electron trapping across the 10 mm thickness is evident in
the photopeak pulse height as measured for different interaction
depths (Z).  The best energy resolution (2.5% FWHM) is
measured for events occurring near the anode plane.  In
addition to the effects of electron trapping we have observed
that a significant amount of charge is actually collected on the
strips of this detector.  This is not the case with our 5 mm
thick detectors.  Preliminary measurements indicate that 30%
of events have more than 10% charge collection by the strip
and that 15% of events have more than 50% charge collection
by the strip.  Further study is planned to better understand this
effect. Since charge collected on the pixels is the measure of
energy, this effect degrades spectroscopic performance.  The
charge collected on the strips has two other consequences: 1) it
attenuates the pixel signal for some events dropping them
below the trigger threshold resulting in a loss of efficiency and
2) it changes the nature of the induced signal on the strips thus
degrading the resolution in the X- and, eventually, Z-

coordinates.
Fig. 7 shows the

energy resolution
distribution for all
pixels of four
prototype detector
modules as
determined from a
Gaussian fit to the
122 keV peak.
Detector UNH-Y-2
(bottom panel) is 10
mm thick; the others
are 5 mm thick. Note
that only 56 pixels
are included in the
histogram for detector
UNH-Y-2 as one
pixel row channel (8
pixels) was too noisy

to measure.  No correction for electron trapping has been made
here.  

B. Event location (X, Y)
We used a tungsten collimator with a 0.2 mm wide bore

hole and 241Am and 57Co point sources to measure the
capability for determining the X and Y locations of photon
interactions. Beam-spot scans were performed in 150 µm steps
(X and Y) to calibrate a small region of 5 mm thick detector
UNH-EV-3.

Figure 8 shows histograms of computed event locations (X,
Y) in response to beam spot illuminations of this detector with
122 keV and 60 keV photons. The measured 1-σ spatial
resolutions are 0.3 mm (X) and 0.2 mm (Y) at 122 keV and
0.4 mm (X) and 0.2 mm (Y) at 60 keV. Sub-pitch (sub-mm)

locations are computed by interpolation of the pulse height
data of neighboring channels. Note that while the spatial
resolution numbers in Y are small, the computed locations in
this dimension can be in error by as much as 0.5 mm.  This is
a result of very little charge sharing between neighboring pixel
rows. Signal to noise improvements of the strip signal
circuitry are necessary to extend the threshold for measuring
location in the X-dimension to lower energies.

Figure 8.  Beam spot images: 122 keV (left), 60 keV (right)

C. Event location (Z), Depth of Interaction
Depth calibration was obtained by illuminating detector

UNH-EV-3 from the side, at a single depth, using 122 keV
photons from a 57Co source.  A 0.4 mm wide slit in a tungsten
block was used as the collimator.  This slit collimator was
used at seven different depths.  Two methods were used to
compute depth using the data: 1) cathode-to-maximum pixel
ratio (c/a) and 2) strip sum-to-maximum pixel ratio (s/a).  The
Z-dependence was used to reconstruct the Z-coordinate by each
method in analysis of each event in subsequent imaging
demonstrations.

Fig. 9 shows the distribution of event locations for a slit
beam incident normal to the full width of the Y=0 side of the
detector at Z=3.8 mm. The interaction depth (Z) was computed
for each event using the cathode to maximum pixel ratio
method.  The measured 1-σ average spatial resolution at 122
keV across the full range of depth is σz(c/a) = 0.37 mm for the
cathode to maximum anode pixel ratio method and σz(s/a) =
0.86 mm for the
strip sum to
maximum anode
pixel ratio
method. The
poorer result
obtained using
the strip sum
method may be
the result of
summing the
noise on the eight
strip signals.
While it meets
our goal of σz <1
mm, the
resolution is

0-7803-7636-6/03/$17.00 ©2003 IEEE. 471



Fig. 10. Measurement of the
attenuation length for 122 keV photons
in CZT.

Figure 12.  Alternative anode
pattern under study with simulation
tools.

expected to be poorer at
lower energies. Further
study is required to better
understand this
discrepancy.  The
advantage of the strip
sum approach is that the
Z-coordinate is measured
using only signals
collected on the anode
surface.  This will be
significant when forming
large closely packed
detector module arrays.

Fig. 10 shows the measured distribution of interaction
depths (Z) for 122 keV photons from a 57Co source
illuminating the entire cathode surface at normal incidence.
The attenuation length, 2.0 ± 0.16 mm, determined from a fit
to the data, compares well with the theoretical value, 2.01
mm.

D. 3-d Imaging

Fig. 11. Beam spot image, ~25° incidence. 3-d event locations (top left),
projections (clockwise) xy, xz and yz. Note: cathode is at Z=0; sign of Z was
inverted to facilitate the graphic illustration.

Fig. 11 shows the 3-d image and projections of a 0.2 mm
beam spot of 122 keV photons incident at ~25° from the Z-
axis.  The beam is directed so that it enters near strip 3, pixel
1 and crosses several pixel rows and several strip columns as it
passes through the 5 mm thickness of the detector. The
discontinuity of computed event locations in the Y-dimension
indicates that there is very little charge sharing between pixel
rows.

IV. CONCLUSIONS AND FUTURE WORK

We have employed relatively simple pulse shaping circuitry
on signals of prototype 5 and 10 mm thick orthogonal
coplanar anode CZT strip detectors and measured energy and
spatial resolution performance in three dimensions.  We have
demonstrated good energy resolution in the range from 14 to
662 keV and sub-mm imaging capabilities down to 60 keV in
the X- and Y-coordinates and down to 122 keV in the Z-
coordinate using two methods.  

Problems encountered
include electron trapping
and charge collection on the
strip electrodes for the 10
mm thick detectors.
Further study is required to
better understand and
address these issues.
Simulations conducted at
the University of Montreal
suggest the anode pattern
shown in Fig. 12 will help
address the issues of
discontinuous position
determination in the Y-
dimension (charge sharing among neighboring pixels) and of
electron trapping in 10 mm thick detectors. [3].

Future work will include the design, fabrication and test of
prototype detector modules employing modified anode contact
patterns as well as packaging and custom electronics
development.  Monte Carlo simulations will be developed to
characterize the physics of high energy photon interactions in
CZT.
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