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During the solar flare events on 11 and 15 June 1991, COMPTEL 
measured extended emission in the neutron capture line for about 5 
hours after the impulsive phase. The time profiles can be described by 
a double exponential decay with decay constants on the order of 10 min 
for the fast and 200 min for the slow component. Within the statis- 
tical uncertainty both flares show the same long-term behaviour. The 
spectrum during the extended phase is significantly harder than during 
the impulsive phase and pions are not produced in significant numbers 
before the beginning of the extended emission. Our results with the 
measurements of others allow us to rule out long-term trapping of par- 
ticles in non-turbulent loops to explain the extended emission of these 
two flares and our data favour models based on continued acceleration. 

I N T R O D U C T I O N  

Before the large solar flares in June 1991 occured, 7-ray emission f rom flares 
has been observed for no longer than about  half an hour. For the 11 June 
flare E G R E T  detected emission > 50 MeV for more than 8 hours (1) and 
C O M P T E L  detected emission in the neutron capture line for about  5 hours 
(2) (3). The 15 June flare observations are not as detailed as those from 11 
June. However, C O M P T E L  also measured emission of the neutron capture 
line for several hours for this flare. The GAMMA-1 instrument  observed 
emission > 50 MeV (4) (5) for a different t ime period and reported significant 
emission during the following spacecraft orbit. 

1present address: University of New Hampshire, Space Science Center, Durham, 
NH 03824 
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A model for the 11 June flare (6) based on the EGRET measurements 
explained the extended emission by particles that were accelerated during 
the impulsive phase and trapped in non-turbulent coronal loops. A different 
explanation for the emission during the extended phase of a flare (7) favours 
continuous acceleration of particles in turbulent magnetic loops for long time 
periods. 

Our results for the 11 and 15 June 1991 flares allow us to investigate the 
question whether long-term trapping or continuous acceleration better de- 
scribes the prolonged emission. We analyze the COMPTEL measurements 
and compare them to the results of the EGRET and GAMMA-1 instrument 
to distinguish between these types of processes. 

O B S E R V A T I O N S  

The COMPTEL Instrument 

The Compton telescope COMPTEL onboard CGRO is sensitive to v-rays in 
the energy range from 0.75 to 30 MeV. This energy range contains the major 
nuclear deexcitation lines and the neutron capture line. Continuum emission 
in this range is produced by nuclear emission originating from inverse nuclear 
reactions (broad lines) and electron bremsstrahlung from both primary elec- 
trons accelerated directly in the flare and secondary electrons produced by 
pion decay. 

The COMPTEL telescope uses a double scatter technique to get both spec- 
tral and directional information of the incoming v-rays (8). In the ideal case 
the photons undergo a Compton scattering in one of seven detector modules 
of the upper detector plane and the scattered photon is subsequently fully 
absorbed in one of fourteen modules of the lower detector plane. Measuring 
the energy deposits in both detector planes yields the energy of the photon. 
It also provides the scatter angle of the Compton interaction in the upper 
detector and together with the event location in the modules constitutes the 
imaging capability of COMPTEL. 

For solar flare observations the position of the source is known and the 
imaging properties of the instrument are used for suppressing the instrumen- 
tal background and for excluding events that are not fully absorbed in the 
lower detector. Consequently the instrument offers high sensitivity and a 
nearly Gaussian response for an uncomplicated deconvolution of spectra. The 
instrumental background of COMPTEL is mostly due to cosmic ray interac- 
tions. The intensity of the incident cosmic ray flux varies periodically accord- 
ing to the spacecraft orbit. For a model background we use time intervals 
about 15 and 16 orbits before and after the flares where the orbit conditions 
at the time of the flare are reproduced. 

All detectors of COMPTEL are shielded by anti-coincidence plastic scin- 
tillators. While these scintillators are essential for normal observations, they 

220 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at:

http://scitation.aip.org/termsconditions. Downloaded to  IP:  132.177.229.79 On: Mon, 24 Nov 2014 16:16:12



cause dead time problems for very intense flares. Due to the enormously high 
flux in soft X-rays during the impulsive phase, these anti-coincidence shields 
are triggered at a high rate. The dead time fraction can be calculated from 
housekeeping data. The statistics, however, remain poor under high dead time 
conditions. Therefore, the sensitivity of the telescope is degraded during the 
impulsive phase of the flare on 11 June. On 15 June the CGRO observation 
window allowed only measurements beginning about 40 min after the onset 
of the flare. At this time the soft X-ray flux has alrady faded and dead time 
was not a problem. 

Ex tended  E m i s s i o n  on 11 and  15 June  1991 

The flare on 11 June 1991 was a X12/3B event starting at 0156 UT accord- 
ing to GOES-7. This flare began shortly after orbital sunrise for CGRO and 
could be observed during the whole orbital daylight period until about 0300 
UT. The emission in the 2.2 MeV line was detected by COMPTEL for three 
more consecutive orbits. 

To study the emission, the orbit was divided into twelve time intervals each 
with approximately equal statistics. Data for the subsequent orbits are time 
integrated. Each spectrum was corrected for background and dead time effects 
and was deconvolved using a SVD matrix inversion technique. 

To estimate the bremsstrahlung of the primary electrons we use the data 
of the PttEBUS/GRANAT instrument, that measures photon energies down 
to 75 keV. The bremsstrahlung continuum as measured by PHEBUS can by 
described by a power law index of 2.55 -4- 0.4 (9) (10). The hard X-ray time 
profile of PHEBUS in the energy range 310 - 540 keV (9) is used to represent 
the time dependence of the bremsstrahlung emission. This bremsstrahlung 
model is necessary to determine the excess flux in the nuclear line region. 

The impulsive phase consisted of several maxima, seen also in microwaves 
and hard X-rays. After the last peak of the impulsive phase at 0206 UT the 
prompt nuclear emission fades away and falls below the sensitivity limit at 
about 0209 UT. At 0213 UT the prompt emission returns. We define this to 
be the beginning of the extended emission. 

The analysis reveals different emission characteristics during impulsive and 
extended phases: The fluence ratio of the 2.2 MeV line and the 4 - 7  MeV range 
increases from 0.80 + 0.12 to 1.24 + 0.12. This indicates that the spectrum is 
significantly harder in the extended phase of the flare. Furthermore, the emis- 
sion in the energy range 8 - 30 MeV can be explained by the bremsstrahlung 
of the primary electrons during the impulsive phase. In the extended phase, 
however, the 8 -30  MeV flux exceeds the level expected from primary eletrons. 
We conclude that this additional component originates from secondary elec- 
trons of pionic origin. This observation shows that the major pion production 
does not begin during the impulsive phase, but is better associated with the 
extended processes. The time behaviour of prompt nuclear emission and emis- 
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sion at energies 8 - 30 MeV is correlated during the extended phase. From 
0227 UT until the end of the first observation period at 0300 UT the 4 - 7  MeV 
and 8 - 30 MeV emission decay exponentially with constants of (6.4 4- 0.9) 
min for the nuclear emission and (7.0 + 1.2) min for the 8 - 30 MeV emission. 

The impulsive phase of the flare on 15 June 1991, also a X12/3B event, 
was not observable by CGRO. The observation window opened some 50 min 
after flare onset. Nevertheless, the 7-ray emission could still be detected by 
COMPTEL and the flux in the 2.2 MeV line was measured for several hours. 

0 . 1 0 0 0  _ 

0 . 0 1 0 0  

0 . 0 0 1 0  

0 .0001  - 

I I I 

Extended Emission 

t + 2.2 MeV line - 

f ~ 0 June 11 [] June 15 i 

~ k  r,=9.4+ 1.3min r , =  12.6:t:3.0::: ! 

j f l a r e  o n s e t  ( C O E S - 7 )  

, , , I , , , I , , L I 

0 2 4 6 
T i m e  s i n c e  f l a r e  o n s e t  [ h i  

FIG. 1. Extended emission of the flares on 11 and 15 June 1991 in the neutron 
capture line as measured by COMPTEL. 

The time profile of the 2.2 MeV line for both flares is given in figure 1. The 
origin of the time axis refers to the onset of the flares, i.e. 0156 UT on 11 June 
and 0810 UT on 15 June. The decay curves are fit by a double exponential 
decay. The decay constants for 11 June are (9.44-1.3) min and (2204-50) min. 
For 15 June they are (12.64-3.0) min and (1804-100) min. Both flares show a 
similar time profile. Their flux values are of the same order as are their time 
constants. The transition from the fast to the slow component occurs in the 
15 June event about 20 min later than in the 11 June event. 
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DISCUSSION AND CONCLUSIONS 

Our results are not in agreement with an explanation of the extended emis- 
sion by long-term trapping of particles. The most important implication of a 
storage model in this context is, that we expect the trapped particles to suffer 
energy dependent losses (e.g. energy losses due to Coulomb collisions). Par- 
ticles with MeV energies are removed more quickly than particles with GeV 
energies. Hence, different spectral components that originate from different 
energy ranges of the parent spectrum should have different decay times. In 
our case, the nuclear emission, produced mainly by 10 - 40 MeV/nucl. parti- 
cles, should decay about 30-times faster than the pionic emission, originating 
from particles with > 300 MeV/nucl. (6). 

The COMPTEL measurements of the prompt nuclear emission (from pro- 
tons with energies between 10 - 40 MeV) and the excess in the 8 - 30 MeV 
range from secondary electron bremsstrahlung from pion decay (requiring sev- 
eral 100 MeV protons) have similar temporal behaviours indicating a constant 
proton spectral shape. This does not agree with the predictions of a storage 
model. Thus, we conclude that particle trapping cannot play a dominant role 
in the extended phase of the 11 June flare up to 0300 UT. 

For the flare on 11 June the long-term behaviour in the 2.2 MeV line can 
be compared to the emission > 50 MeV measured by EGRET. The time 
constants are 25 rain and 255 min (1). However, these measurements are based 
on the spark chamber data only and are restricted to times after 0400 UT due 
to dead time effects. Therefore, the determination of the short time constant 
is not very reliable. By also using the TASC data the time profiles show a 
much steeper decay (11). This shows that both time constants measured by 
EGRET are consistent with the 2.2 MeV profile measured by COMPTEL. 
Since the neutrons responsible for the 2.2 MeV line are produced from lower 
energy protons than pions, their similar intensity-time profile further supports 
our conclusion that the parent proton spectrum was constant in shape during 
the extended phase. 

The faster decaying component in the EGRET data was explained with 
primary electron bremsstrahlung (1). Our 8 - 30 MeV measurement dur- 
ing the extended phase is above what we expect from primary electron 
bremsstrahlung. Furthermore, if we assume that this emission is due to pri- 
mary electrons we expect different time evolution for the 8 - 30 MeV emission 
and the EGRET > 50 MeV measurement and for the 2.2 MeV line or the 
nuclear emission between 4 -  7 MeV (both of nuclear origin). Since we mea- 
sure a correlated time behaviour, we conclude that the fast decay during the 
extended phase is dominated by pionic emission rather than primary electrons. 

For the 15 June flare the scenario is not as complete, but the data have a 
similar interpretation. The COMPTEL data of the neutron capture line show 
the same temporal characteristics as the emission at > 50 MeV as measured by 
GAMMA-1. Recall that the COMPTEL measurements were made in a time 
interval after the GAMMA-1 observations. Also in the GAMMA-1 data there 
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is a signal in the following orbit that  indicates that  there exists an additional 
slow component declining with a time constant > 100 min. As with the 11 
June flare data, these similar time profiles in two different spectral components 
argue against long-term trapping. 

Our data  favour an explanation by continuous or episodal acceleration (7). 
In these models the plasma turbulence does not inhibit the establishment of 
long time scales but serves to accelerate a new particle population. 

Both flares are characterized by at least two components showing different 
exponential decay times. This may be interpreted in terms of several large 
scale loops of different sizes. In a highly turbulent environment the particle 
transport is dictated by diffusion. If the diffusion constant does not vary 
within the loops, the decay constants are proportional to the square of the loop 
length. An impulsive loop of 109 cm and extended phase loops of (0.5-1) .  10 l° 
cm are in the proper ratio to explain the measured time behaviour. Indeed, 
these are typical loop length for the extended phase that  were observed for 
the 15 June flare in Ha (12). Moreover, both flares show similar time profiles. 
It appears that  the magnetical loop structure on large scales remains stable 
for several days and the same regions offer the most efficient sites for particle 
acceleration in both flares. 
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