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Abstract. POET (Polarimeters for Energetic Transients) is a Small Explorer mission concept proposed to NASA in January 
2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of 
two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 
2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 
60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The POET spacecraft provides a zenith-pointed 
platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with 
systematics in the polarization response. POET will provide sufficient sensitivity and sky coverage to measure statistically 
significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, 
pulsars and other sources of astronomical interest. 

Keywords: Gamma-ray Bursts, Polarimetry, X-ray, Gamma-ray 
PACS: 95.55.Ka 

INTRODUCTION 

Gamma-ray bursts (GRBs) are the most explosive events in the universe, and have stimulated intense observational and 
theoretical research. Theoretical models indicate that an understanding of the inner structure of GRBs, including the 
geometry and physical processes close to the central engine, requires the exploitation of high energy X-ray and gamma-
ray polarimetry but observational techniques have been limited. Recent advances in instrument capabilities finally 
enable the exploration of polarization of X-ray and gamma-ray emissions from GRBs. POlarimeters for Energetic 
Transients (POET) is a SMEX mission concept that provides highly sensitive polarimetric observations of GRBs and 
can also make polarimetry measurements of solar flares, pulsars, soft gamma repeaters, and slow transients. POET will 
make measurements with two different polarimeters (both with wide fields of view) to provide a broad energy range 
of observations: The Gamma-RAy Polarimeter Experiment (GRAPE; 60-500 kev) and the Low Energy Polarimeter 
(LEP; 2-15 keV). The POET mission would significantly advance our understanding of key physical processes through 
high energy polarimetry. 

GAMMA-RAY BURST SCIENCE WITH POET 

Extensive multi-wavelength observations of the prompt GRB emission and the long-wavelength afterglows have led to 
the development of models for two types of GRBs [21]. Long bursts (> 2 s) typically exhibit a relatively soft spectrum 
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and are generally associated with the death of massive stars [12] whereas short bursts (< 2 s) generally exhibit a harder 
spectî um and are associated with the merger of compact star binaries (e.g., neutron star-neutî on star, neutî on star-
black hole, etc., [4]. In both cases, the process is thought to result in the formation of a black hole. Regardless of the 
progenitor and the central engine, a generic "firebaU" model suggests that a relativistic jet is launched from the center 
of the explosion, with a bulk Lorentz factor, F, greater than 100 [13]. The "internal" dissipation within the fireball 
(likely due to internal shocks) leads to emission in the X-ray and gamma-ray band, which corresponds to the observed 
GRB prompt emission. Eventually, the fireball jet is decelerated by the circumburst medium, which leads to a long-
lasting forward shock, the emission from which is believed to be responsible for the long-lasting afterglows following 
the bursts themselves. 

In spite of extensive observational efforts (e.g., CGRO, HETE-2, BeppoSAX, INTEGRAL, Swift, and others), 
several key properties of GRB explosions remain poorly understood and are difficult or even impossible to infer 
with the spectî al and lightcurve information currently collected. High energy polarization measurements will lead to 
unambiguous answers to many open questions, including: 

What is the magnetic structure of GRB jets? It is speculated that stî ong magnetic fields are generated at the GRB 
central engine, which may play an essential role in the launch of the relativistic jets. It is unclear, however, 
whether the GRB emission region is penetî ated by a globally stî uctured, dynamically important magnetic field, 
and whether GRB emission is due to shock dissipation or magnetic reconnection. 

What is the geometric structure of GRB jets? Although it is generally believed that GRBs are coUimated, the dis
tribution of jet opening angles and the observer's viewing direction are not known, and it is not clear whether 
there are small-scale stî uctures within the global jet. 

What is the prompt radiation mechanism of GRBs? The leading model is synchrotron emission of relativistic elec
trons in a globally ordered magnetic field carried from the centî al engine or random magnetic fields generated in 
situ in the shock dissipation region. Other suggestions include Compton drag of ambient soft photons, synchrotron 
self-Compton emission, and the combination of a thermal component from the photosphere and a non-thermal 
component (e.g., synchrotron). 

The theoretical models for the prompt emission generally fall into two broad types [20]: The physical model invokes 
a globally ordered magnetic field in the emission region, so that electî on synchrotron emission in this ordered field 
gives a net linear polarization (e.g., [20][8][5]). Such a model apphes for most observer viewing-angle geometi^ies, 
where the typical level of polarization is quite high (11 > 20%), with the maximum 11 -̂  70%. The geometric model 
requires an optimistic viewing direction to observe a high degree of polarization. In this model, both the magnetic 
field structure and electî on energy distî ibution is random in the emission region so that no net polarization is detected 
if the viewing angle is along the jet beam (regardless of the radiation mechanism). However, if the viewing direction 
is near the edge of the jet, in particular about l/F outside the jet cone, a high polarization degree would result due to 
loss of the emission symmetî y [17][20][7]. Within the context of the geometî ic model, typical polarization values are 
n < 20%, although synchrotî on emission can produce as high as 11 -̂  70% and Compton drag models [7] can achieve 
n r^ 100% under optimistic geometî ic configurations. 

In general, given a random distribution of viewing angles, the fraction of bursts that can achieve a high 11 in the 
geometî ic models is significantly smaller than that in the physical models. A statistical study of polarization properties 
of a large sample of GRBs would therefore differentiate between the models, and provide a direct diagnostic of the 
magnetic field stî ucture, radiation mechanism and geometî ic configuration of GRB jets. Toma et al. [19] displays the 
predictions for the distî ibution of polarization magnitudes and the dependence of 11 on the peak of the energy break 
{Ep) in the GRB spectrum. Results are shown for three distinct models: 

• Physical model for synchrotron emission with ordered magnetic fields (SO) 
• Geometî ic model for synchrotî on emission in random magnetic fields (SR) 
• Geometî ic model for Compton-drag (CD) 

The POET sensitivity will allow the accumulation of GRB polarization measurements at a rate of -̂  50/year, 
permitting studies that will distinguish between the geometric and physical models. Given a sufficiently large number 
of events, it may even be possible to distinguish between the two geometî ic models (SR and CD). 

The GRB radiation mechanism can be determined from the energy-dependence of the polarization measurements. 
The GRB prompt emission spectî um is typically characterized by a broken powerlaw [1]. Generally it is believed that 
spectî al energy break {Ep) corresponds to a break in the non-thermal electron spectral disti^ibution. This would result in 
a jump of the polarization degree across Ep. Alternatively, some authors (e.g., [15]) argue that the observed spectî um is 
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TABLE 1. Instrument Parameters 

GRAPE LEP 

Polarimetry 60-500 keV 2-15 keV 
Detectors BGO/pIastic scintillator (62) Ne : CO2 : CH3NO2 Gas (8) 
Spectroscopy 15 keV - 1 MeV 2 - 1 5 keV 
Detectors Nal(TI) scintillator (2) as above 
Field-of-View ±60° ±44° 

a superposition of a thermal spectrum (probably from the photosphere) and a non-thermal synchrotron spectrum. This 
would lead to a dip in the polarization spectrum. POET can measure the degree of polarization both above and below 
Ep (or measure the polarization as a function of energy) and therefore would differentiate the two models, and identify 
the GRB radiation mechanism and the emission site, which are very difficult to infer from current observations. 

POET INSTRUMENT SUITE 

POET is comprised of two polarimetry instruments, GRAPE and LEP, co-aligned on a zenith pointed rotating 
spacecraft. LEP and GRAPE determine polarization by measuring the number of events versus the event azimuth 
angle (EAA) as projected onto the sky. This is referred to as a modulation profile and represents a measure of the 
polarization magnitude and direction of polarization for the incident beam. Depending on the type of polarimeter, the 
EAA is either the direction of the ejected photoelectron (LEP) or the direction of the scattered photon (GRAPE). The 
response of a polarimeter to 100% polarized photons can be quantified in terms of the modulation factor, û, which is 
given by: 

Where Cmax and Cmtn are the maximum and minimum of the modulation profile, respectively. The polarization fraction 
(n) of the incident flux is obtained by dividing the measured modulation by that expected for 100% polarized flux. 
The polarization angle (^o) corresponds either to the maximum of the modulation profile (LEP) or the minimum of 
the modulation profile (GRAPE). To extract these parameters from the data, the modulation histograms are fit to the 
functional form: 

C ( $ ) = A + 5cos2($-$o) (2) 

The sensitivity of a polarimeter is defined in terms of the MDP, which refers to the minimum level of polarization that 
is detectable with a given observation (or, equivalently, the apparent polarization arising from statistical fluctuations 
in unpolarized data). The precise value of the MDP will depend on the source parameters (fluence, spectrum, etc.) and 
the polarimeter characteristics. At the 99% confidence level, the MDP can be expressed as, 

e^u t 

where S is the source strength (cts cnT^s^^), B is the total background rate (cts cm^^s^^), t is the observing time 
(sec), e is the quantum efficiency, and A is the collecting area. The ultimate sensitivity, however, may not be limited by 
statistics but by systematic errors created by false modulations that arise from azimuthal asymmetries in the instrument. 

Gamma-RAy Polarimeter Experiment: GRAPE 

GRAPE [9] [10] is designed to measure polarization from 60-500 keV and to provide spectroscopy over a broad 
energy range from 15 keV to 1 MeV. The GRAPE design is highly modular and fault tolerant. The GRAPE instrument 
is composed of 64 independent detector modules arranged in two identical assemblies that provide the associated 
electronics and the required mechanical and thermal support. All detector modules employ well-established, high-
technology readiness level scintillator/photomultiplier tube (PMT) technology with geometries optimized by both 
simulation and laboratory studies. 
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FIGURE 1. Left: GRAPE detection principle. Center: GRAPE off-axis response to 288 keV X-rays (45^ off-axis). Right: POET 
Effective area 30̂  off-axis 

At energies from ~ 50 keV up to several MeV, photon interactions are dominated by Compton scattering. The 
operational concept for GRAPE is based on the fact that, in Compton scattering, photons are preferrentially scattered 
at a right angle to the incident electric field vector (the polarization vector). If the incident beam of photons is polarized, 
the azimuthal distribution of scattered photons will be asymmetric. The direction of the polarization vector is defined 
by the minimum of the scatter angle distribution. The GRAPE performance characteristics are shown in Table 1. 

Polarimeter Modules: The design of the GRAPE instrument is very modular, with 62 independent polarimeter 
modules and 2 spectroscopy modules. Each polarimeter module incorporates an array of optically independent 5x5x50 
mrrP non-hygroscopic scintillator elements aligned with and optically coupled to the 8x8 scintillation light sensors of 
a 64-channel MAPMT. Two types of scintillators are employed. Low-Z plastic scintillator is used as an effective 
medium for Compton scattering. High-Z inorganic scintillator (Bismuth Germanate, BGO) is used as a calorimeter, 
for absorbing the full energy of the scattered photon. The arrangement of scintillator elements within a module has 
28 BGO calorimeter elements surrounding 32 plastic scintillator scattering elements. Valid polarimeter events are 
those in which a photon Compton scatters in one of the plastic elements and is subsequently absorbed in one of the 
BGO elements, as shown in Eigure 1. These events can be identified as a coincident detection between one plastic 
scintillator element and one BGO calorimeter element. The azimuthal scatter angle is determined for each valid 
event by the relative locations of hit scintillator elements. It is not necessary to know where within each element the 
interaction takes place (e.g., the depth of interaction). It is sufficient to know only the lateral location of each element to 
generate a histogram of photon scatter angles. Each independent polarimeter module includes the electronics required 
to process the MAPMT signals as well as qualify and digitize the event data. This approach - compact, rugged, 
independent modules - was employed successfully with two H8500 MAPMT-based detector modules in the GRAPE 
balloon payload flown from Palestine, TX in June 2007. 

Spectrometer Modules: To facilitate spectral measurements over a broader energy range (15 keV-1 MeV), GRAPE 
includes 2 spectrometer modules. Each spectrometer module assembly has a single thallium-doped sodium iodide 
(Nal(Tl)) scintillator crystal mounted on the face of the MAPMT. Laboratory tests of this configuration demonstrate 
energy resolution of 15% and 8% EWHM at 122 and 662 keV, respectively. 

Performance 

The scientific performance of the GRAPE polarimetry modules has been investigated using a laboratory prototype 
module and Monte Carlo simulations. The simulations were performed using the software package MGEANT [18] 
with a modification to include the effects of polarization in Compton scattering [10]. The simulations were validated 
with laboratory tests and have been used to predict the performance of the GRAPE instrument on POET. 

Laboratory Testing: The laboratory prototype is a configuration of plastic scintillators and Csl crystals. The 
prototype module was exposed to partially polarized radiation produced by 90^ scattering of 662 keV photons (from 
a ^^^Cs source) in a plastic scintillator block, producing a beam with energy 288 keV and a polarization of ~ 60%. 
The measured polarization for normally-incident radiation was 56% ± 9% was consistent with the scattering geometry. 
Tests were also performed with an off-axis source to demonstrate the wide angle response of the GRAPE design at 
angles > 45^. The response is shown in Eigure 1. 

Beam Calibration: The prototype module was exposed to 100% polarized radiation of two energies at the Advance 
Photon Source at Argonne National Laboratory. Modulation factors of 46% (69 keV) and 48% (129 keV), were 
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Pliotoelectron Emission Angle [cegrees) 

FIGURE 2. Left: The TPC polarimeter uses a simple strip readout and time of arrival to form a pixelized image of photoelectron 
track. Middle: The TPC polarimeter forms an image by digitizing the signal on each readout strip. The signal from a 6 keV X-ray, 
proportional to the charge pulse-train deposited on each strip, is shown on the right. The resulting image shows the interaction point, 
emission angle and end of the track. The size of each circle is proportional to the deposited charge in each virtual pixel; the grid is 
on a 132 ̂ um spacing. Right: A histogram of reconstructed polarized 6.4 keV photoelectron tracks. Demonstrates a modulation of 
45%. 

obtained which are in agreement with simulations [10]. 
Engineering Balloon Flight: In June 2007 the prototype polarimeter module was flown on a NASA balloon flight 

from Palestine, TX. The module performance met all requirements throughout the flight. The measured background 
counting rate (integrated over the full energy range of the instrument) is ~ 2 cts sec~^ per module. 

Simulations: The full GRAPE instrument has been simulated to predict its scientific performance. Both the effective 
area and modulation factor were calculated using simulations of mono-energetic photons with 100% polarization. The 
off-axis effective area is shown as a function of energy in Figure 1. Simulations show that GRAPE retains ~ 40% of its 
polarization sensitivity for photons incident 60^ off-axis. Based on these performance simulations, we expect GRAPE 
to detect -- 40 GRBs per year with a MDP better than 20%, and -- 6 per year with MDP better than 8%. 

Low Energy Polarimeter: LEP 

The LEP measures the polarization of incident photons with the innovative operation of a Time Projection Chamber 
(TPC), a proven technology used in high-energy particle physics. It is simple in design and uses the photoelectric effect 
to provide unmatched broadband polarization sensitivity over the 2-15 keV band-pass making it a low risk solution 
that requires low power and mass to make highly sensitive measurements [2] [6]. 

TPC Polarimeter Operation: The LEP polarimeter enclosure will consist of four dual-readout detector modules 
each with an isolated gas volume contained by a Be X-ray window. Each detector module contains two 6 x 12 x 24 
cm^ (LxWxH) TPCs that share a single X-ray transparent drift electrode. Each TPC is comprised of a micropattern 
proportional counter, consisting of a shared drift electrode and a high-field gas electron multiplier (GEM) positioned 
1 mm from a strip readout plane. When an X-ray is absorbed in the gas between the drift electrode and the GEM, a 
photoelectron is ejected in a preferential direction with a cos^^ distribution, where 0 is the azimuthal angle measured 
from the X-ray polarization vector. As the photoelectron travels through the gas it creates a path of ionization that drifts 
in a moderate, uniform field to the GEM where an avalanche occurs. The charge finally drifts to the strip detector where 
it is read out. 

Figure 2 illustrates how a track image projected onto the x-y plane is formed by digitizing the charge pulse 
waveforms and binning into pixels. The coordinates are defined by strip location in one dimension, and arrival time 
multiplied by the drift velocity in the orthogonal dimension. The strips are smaller than the mean free path of the 
photoelectron and therefore an image of the track can be reconstructed and the initial direction of the photoelectron 
determined. The magnitude and orientation of the source polarization can be determined from a histogram of the 
emission angles. 

Design: The LEP will use 12 x 24 cm^ GEMs with holes in a hexagonal configuration on an 80 /im pitch. The 
readout plane is 12 x 24 cm^, with strip electrodes 24 cm long on a 80 /im pitch and every 3F^ strip tied together. The 
LEP will use nitromethane (CH2NO2) as the charge-carrying ion in neon, with a small quantity of CO2 as a quench 
gas at 780 Torr providing a slower drift speed compatible with slower, low power electronics. 
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FIGURE 3. LEFT: GRAPE sensitivity to GRB polarization for a distribution of Ep RIGHT: LEP sensitivity to GRB polarization 
for a distribution of £„ 

Performance: A prototype detector has been characterized with polarized X-rays at 6.4 keV and 4.5 keV and 
unpolarized 6 keV X-rays in 'Ht:C02:CH^N02 at 500 and 600 Torr. A typical modulation curve is shown in Figure 2. 
The modulation factor at 6.4 keV is 41% and the residual instrumental asymmetry measured with unpolarized X-rays 
is below 1%. The instrument performance has been modeled over the full energy range. The LEP effective area for a 
source 30° off-axis is shown in Figure 1, providing more than 200 en? at 3.5 keV. 

GRB Sensitivity: To determine the sensitivity of the LEP, GRBs were selected from the HETE-2 catalog from the 
beginning of the mission to 13 September 2003 which were detected both in the wide-field X-ray monitor (WXM) and 
the French Gamma telescope (FREGATE). 45 bursts satisfied these criteria [16]. 

The MDP for each of the 45 bursts was calculated using a weighted modulation factor [11]. Accounting for the 
HETE-2 FoV (0.9 str) and the time period over which the catalog was obtained (-̂  3 years operational time including 
periods in the SAA), and scaling the distribution of bursts to the LEP field of view, the number of bursts for a given 
MDP was determined per year. LEP will detect >8 GRBs per year with a sensitivity of 10% and >40/year with a 
sensitivity of 25%. 

POET Sensitivity 

44,100 GRBs were simulated, varying Ep from 1 keV to 10 MeV. The BATSE time-averaged Band function spectral 
parameter distribution was assumed for the low energy and high-energy photon indices and the BAT Tioo distribution 
for the duration. The time-averaged flux (2-400 keV) versus Ep of the HETE-2 GRB sample [16] indicates that GRBs 
with Ep r^ 10 keV, 100 keV and 1000 keV tend to have a flux of -̂  lO^^er^ cm^^ s^^, -̂  lO^^er^ cm^^ s^^ and 
r^ lO^^erg cm^^ s^^, respectively. The LEP and GRAPE responses were calculated for the 12,500 simulated bursts 
that satisfied the HETE-2 relationship. The number of bursts detected with S/N>5 is 99% for LEP, 80% for GRAPE, 
78% GRAPE and LEP). The number of bursts for which Ep can be determined is 20% for Ep < 10 keV, > 50% for Ep 
< 20 keV and -̂  100% for Ep -^0.2-1 MeV. The polarization sensitivity (i.e. MDP) to the burst sample is shown in 
Figure 3 where the z-axis is the percentage of bursts measured with a given Ep and MDP. 

SUMMARY 

The capabilities presented here for GRAPE and LEP, show that the POET mission would significantly advance our 
understanding of key physical processes through high energy polarimetry and simultaneous broadband spectroscopy 
of Gamma-ray bursts. 
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