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Further Studies of Single-Sided Charge-Sharing CZT Strip
Detectors

Burçin Dönmeza, John R. Macria, Mark L. McConnella, James M. Ryana, Mark Widholma,
Tomohiko Naritab, Louis-André Hamelc

aSpace Science Center, University of New Hampshire, 39 College Road, Durham, NH USA
03824;

bDept. of Physics, College of the Holy Cross, 1 College Street, Worcester, MA USA 01610;
cDept. of Physics, University of Montreal, P.O. Box 6128 Downtown Station, Montreal,

Quebec, Canada, H3C 3J7

ABSTRACT

We report progress in the study of a thick CZT strip detector module designed to perform gamma-ray spec-
troscopy and 3-D imaging. We report preliminary performance measurements of 7.5 mm thick single-sided
charge-sharing strip detector prototype devices. This design features both row and column contacts on the
anode surface. This electron-only approach addresses problems associated with poor hole transport in CZT that
limit the thickness and energy range of double-sided strip detectors. This work includes laboratory and simula-
tion studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements
while minimizing the number and complexity of the electronic readout channels. This is particularly important
in space-based coded aperture and Compton telescope instruments that require large area, large volume detector
arrays. Such arrays will be required for the NASA Black Hole Finder Probe (BHFP) and Advanced Compton
Telescope (ACT). This new design requires an anode pattern with contacts whose dimensions and spacing are
roughly the size of the ionization charge cloud. The first prototype devices have 125µm anode contacts on 225µm
pitch. Our results demonstrate the principle of operation but suggest that even finer anode contact feature sizes
will be necessary to achieve the desired performance.

Keywords: CZT, strip detectors, gamma-ray

1. INTRODUCTION

Cadmium Zinc Telluride (CZT) detectors have desirable features for high performance gamma-ray imaging
spectrometers. The poor hole transport properties of CZT, however, must be considered when designing detectors
thicker than a few millimeters. Effective designs for thicker detectors employ small contact features on the anode
surface.1–3 These single-sided or electron-only devices include pixel and strip detectors. The advantages of
single sided strip detector designs are as follows.

1. An NxN pixel detector requires N2 channels whereas a single-sided CZT strip detector requires only 2N
channels. This feature is important in construction of large detector arrays because fewer channels draw
less power and reduce the complexity of instrument electronics.

2. Since all signals are on one side of the detector, the design and fabrication of closely packed arrays is
simpler than for double-sided strip detectors where the electrical contacts must be instrumented on both
surfaces.

3. Because electron transport is efficient, single-sided strip detectors can be made up to 10 mm thick, so they
can be used effectively in the range 0.05 to 1 MeV. On the other hand, double-sided strip detectors can be
fabricated only up to 3 mm which limits their use up to 0.3 MeV.

A single sided strip detector design has also been applied to silicon.4
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2. SINGLE-SIDED CHARGE-SHARING STRIP DETECTORS

2.1. Detector concept and first prototype

Figure 1 shows a charge-sharing CZT strip detector1, 2 with eight row channels and eight column channels (64
“pixels” or “unit cells”). The anode pattern and two 1.225 mm square unit cells (expanded right) illustrate
the pad interconnections. Each unit cell contains an array of closely packed anode contact pads in two groups
(gray and black in this figure). The two groups are identically biased for electron charge collection but are
interconnected in columns and rows in the layers of the carrier substrate. A non-collecting grid electrode
surrounding each pixel, biased between pixel pad and cathode, provides a signal that can be used for measuring
the depth of interaction (the Z-coordinate). A single cathode contact on the opposite side is not shown. The
principle of operation requires a sharing of charge between row and column anode contacts for each event. This
is feasible when the pitch size of the anode pads are smaller than the lateral extent of the electron charge cloud
reaching the anode surface. This approach takes advantage of the increasing capability of manufacturers to
pattern and interconnect fine features.

Figure 1. Single-sided charge-sharing strip detector (left). Unit cells (right) show interconnections.

An important advantage of this design is the simplicity of the front-end electronics. Polarities and shaping
times (and ASICs) are the same for both row and column channels. Since row and column electrodes are
identically biased, surface leakage between them vanishes. Also, the large area covered by the grid electrode
should result in better depth resolution than was available from the individual strip column electrodes in our
earlier single-sided strip detector design.2

There are some disadvantages with this design. To measure energy, column and row signals must be added.
This degrades the achievable energy resolution by a factor related to the electronic noise. Capacitance effects
due to the contact pad and interconnect structure also increase the noise. However, selecting the proper ASIC
may minimize this effect. We also anticipate that limited charge sharing due to the small size of the electron
cloud, particularly at low energies, will for some events, result in a measurement of only X or Y, not both, and
will, at least for the first prototype detectors reduce the detection efficiency for imaging measurements.

Photographs of the components of an 11 row × 11 column prototype detector module are shown in Figure
2. Pixel pitch is 1.225 mm for both rows and columns. The patterned CZT anode surface is shown in Figure
2(a). The top surface of the ceramic substrate is shown in Figure 2(b). Figure 2(c) shows the bottom surface of
the ceramic substrate designed for us by MillPack, Inc. It was formed using Dupont Fodel layers on an alumina
substrate. Multiple Fodel layers provide the mating surface contacts, the interconnection of the row contacts, the
interconnection of the column contacts, a shield layer to reduce signal coupling between rows and columns, vias
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Figure 2. Components of a prototype detector module. CZT anode (a); anode mating surface of ceramic subsrate (b);
bottom of ceramic substrate with passive components and connector (c). Detector module assembly (d). Ruler marks are
1mm.

Figure 3. One unit cell pattern on the ceramic substrate
viewed through an eV Products Z-bond sample.
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Figure 4. The actual contact sizes of a unit cell.
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to interconnect the layers and routing of row and column signal and biases to and from the passive components
and the connector (integrated on the underside). Figure 2(d) shows an assembled detector module.

The eV Products Z-bond process was used to bond the 7.5 mm thick patterned CZT substrate to the ceramic
substrate. A photograph through glass of a Z-bond sample layer on a unit cell of a ceramic substrate is shown
in Figure 3. The black dots are the metal filaments that electrically connect the contact pads on the mating
surfaces. The contact and gap sizes for a single unit cell are shown in Figure 4.

Electronic noise, spectroscopic performance and the efficiency for X-Y imaging have now been evaluated with
a prototype device. The results are presented below.

2.2. Spectroscopy

Figure 5. Spectroscopic performance and test pulse response of a unit cell of a single-sided charge-sharing strip detector.
Spectra construction explained in the text.

Spectra from flood illumination of a prototype detector at room temperature with calibration source photons
spanning the energy range from 60 to 1333 KeV are shown in Figure 5. These single pixel spectra were constructed
from the addition of the maximum row and maximum column pulse heights (here we selected row 5 column 5,
i.e. X5 and Y5). We have applied a threshold value for both X and Y pulse heights in the software to obtain
these spectra. Threshold values are 8, 8, 16, 32 and 64 keV at 60, 122, 356, 662, 1333 keV respectively. We
have not used any pulse height correction for interaction depth. Energy resolution (FWHM) is 9.4, 10.1, 13.6,
19.5, 23.0 and 23.7 keV at 60, 122, 356, 662, 1173 and 1333 keV respectively. The photopeaks are symmetric
with no significant low energy tailing that would indicate a loss of signal to the non-collecting areas of the anode
surface. The electronic noise is 5.7 keV FWHM per channel, or 8.0 keV (FWHM) for the combined row and
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column signals. We note that the summed spectra have broader peaks than measured with an earlier design.2

This is partly due to the addition in quadrature of the noise component of the row and column signals.

2.3. Imaging
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Figure 6. Computed event locations for collimated 57Co beam spot. For all events (a); for events above sharing threshold
(b).

Charge sharing between rows and columns plays an important role in determining the imaging efficiency for
this design. Both row and column signals must exceed the noise threshold to achieve a measure of the X and
Y location. To measure the fraction of events registering sufficient signal on either row or column channels, we
made a run with a collimated 57Co source. Figure 6 shows the computed event location for a 1 mm diameter
beam of 57Co photons. The computed image of all photopeak events (122 keV) is shown on the left (Figure
6(a)). The image on the right (Figure 6(b)) is formed from events whose row and column pulse heights exceeded
the 8 keV threshold. We find that 64% of events are above this threshold for both row and column. This fraction
represents the efficiency for imaging measurement at this energy. Studies are underway to help us understand
the sources of inefficiency and to develop improved designs. Figure 7 shows scatter plots for each calibration
source. We see that at all energies, there is a significant number of events for which most or all of the charge
is collected on one channel only (row or column). In an ideal charge-sharing detector, however, events on the
scatter plot should accumulate along the main diagonal with comparable signals in both X and Y.

3. SIMULATIONS

To help understand why our prototype device falls short of this expectation, we performed GEANT (v4.6)
simulations to determine the initial charge cloud radius and calculated the expected effects of diffusion and
electrostatic repulsion of the charge as it drifts toward the anode surface.

3.1. Size of the Charge Cloud

The radius of the charge cloud reaching the anode for any interaction depends on the type of interaction (photo-
electric or Compton), the energy deposit and the depth of interaction.5 In order to register sufficient signal on
both row and column channels, the extent of the electron charge distribution reaching the anode surface must
be at least as large as the contact pad pitch, 225µm for our prototype devices. Our simulation results, however,
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Figure 7. Scatter plots for X5 and Y5 signals for each calibration source.
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show that, on average, 95% of the energy is concentrated within only a 100µm radius at 100 keV. At 1500 keV,
the average radius for 95% energy enclosure is ∼ 400µm.

Figure 8, shows a GEANT simulated scatter plot of row versus column charge sharing for 122 keV photons
(57Co). This simulation is analogous to the prototype detector’s anode pad and gap dimensions (Figure 4) and
the measurements shown in Figure 7. The simulation is setup so that photons randomly hit a 225 × 225µm2

area (125µm pad + 2× 50µm half-gap) centered on a pad. For each event the simulation computes a map of the
deposited energy (ionization charge) and its geometric projection on the anode plane. The energy projected is
divided between row and column (X and Y) regions of the anode surface. If more than 8 keV is collected by one
of the orthogonal direction pads, that event is considered “X-Y shared”. No instrument noise was included. The
simulated result shows that only 26% of the events are tagged as shared events. These are the events distributed
along the sloping line. Measurements, however, at this energy with our prototype detectors (Figure 6) yield a
much higher fraction of “shared” events (64%). This indicates that effects other than the extent of the ionization
at the interaction site are significant factors. Lateral diffusion and electrostatic repulsion of the electrons as they
migrate to the anode surface is one effect that are two effects that merit further consideration.

Figure 8. GEANT simulated scatter plot of X and Y signals for 122 keV photons (57Co.).

3.2. Diffusion and Electrostatic Repulsion
Diffusion of the charge cloud as it moves toward the anode surface will increase the extent of the charge distribu-
tion. The diffusion coefficient is related to the mobility and the temperature through Einstein’s relation so that,
at room temperature, the diffusion coefficient for electrons in CZT is approximately 25cm2/s. The width of the
distribution due to the diffusion must be added in quadrature with the width of the initial charge distribution
to obtain the spread of the charge distribution. It is also seen that even for low ionization densities, electrostatic
repulsion between the electrons plays a significant role for silicon detectors in the size of the cloud when it reaches
the anode plane.6 As the cloud expands as the square root of time under the effect of diffusion, it also expands
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as the cubic root of time with repulsion. It appears that repulsion may become the dominant effect at short
times and that diffusion becomes more important when the cloud density decreases. The diffusion and repulsion
processes are decoupled and their contributions to the cloud size add quadratically.

In addition to these effects, electrons will drift in the direction of the electric field. In a uniform electric field,
all these effects are decoupled and the movement of the electrons is given by an expanding cloud that otherwise
drift at a uniform speed.

Several groups have studied the charge spreading in semiconductor detectors. A study of the position reso-
lution of stripixel detectors show that the pitch must be no greater than the size of the charge carrier cloud and
that charge spreading improves the position resolution.7 The spread has also been measured for germanium
detectors.8 There are also studies on CdTe9, 10 and CdZnTe5 detectors.

Considering these as well as our preliminary studies, we currently estimate, at 100 keV, 25µm rms for the
initial size of the electron cloud, 25µm for diffusion and 50µm for electrostatic repulsion. This yields 60µm rms
or 140µm FWHM when all effects are added quadratically. This figure represents a reasonable target for the
contact pad pitch in subsequent detector designs.

4. CONCLUSIONS AND FUTURE WORK

Our goal is to develop and demonstrate compact, efficient, high performance CZT strip detector modules for
imaging and spectroscopy for 0.05 to 1 MeV gamma measurements and be ready to employ them in large area
detector arrays when large volumes of suitable CZT material with uniform properties become available and
affordable.

We have designed a new type CZT detector, the single-sided charge sharing strip detector, and fabricated
the first prototypes for evaluation in the laboratory. These prototype devices feature 125µm anode contact pads
on 225µm pitch and require signal charge to be shared among row and column pads in order to perform imaging
measurements. The test results demonstrate good spectroscopic response even though the row and column
signals must be summed to construct the spectra. We have demonstrated 2-D imaging using row and column
contacts on a single detector surface and measured X-Y imaging efficiency to be greater than 64% above 60 keV.

We have developed Monte-Carlo simulation tools based on GEANT (v4.6) in part to help us understand the
extent of the ionization and as an aid to guiding future detector design. The simulations indicate that the lateral
extent of the charge at the ionization site is significantly smaller than the contact pad pitch of our first prototype
devices. Tests with these prototypes, however, demonstrate greater imaging efficiency than can be accounted
for by these simulation results alone. We suspect that lateral charge diffusion and electrostatic repulsion play
significant roles in imaging efficiency and have estimated their contributions. We expect that significantly greater
X-Y imaging efficiency will be achieved with a modified detector design featuring contact pads on 150µm or finer
pitch.

We will continue to use simulation tools to help us understanding the performance of our detectors. Future
work includes extending simulation to include diffusion and repulsion effects and to extend the laboratory study
to 3-D imaging. We will also develop and test prototype detectors with smaller anode contact features. We will
pursue an improved design with smaller anode contact features.
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