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ABSTRACT 

Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of 
almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge 
release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There 
are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. 
Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to 
drive these powerful explosions.  
We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a 
photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines 
high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the 
photoelectric effect is the dominant interaction process. We present measurements of polarized and unpolarized X-rays 
obtained with a prototype detector and describe the two mission concepts; the Gamma-Ray Burst Polarimeter (GRBP) 
for the U.S. Naval Academy satellite MidSTAR-2, and the Low Energy Polarimeter (LEP) onboard POET, a broadband 
polarimetry concept for a small explorer mission. 
Keywords: Gamma-ray Bursts, X-rays, Gamma-rays, Polarization 

1. INTRODUCTION 
1.1 Scientific Motivation 
Gamma-ray bursts (GRBs) are short and extremely bright bursts of gamma-rays and X-rays, detected out to 
cosmological distances at the rate of about 2 per week by NASA’s Swift mission. The exact origin of these energetic 
explosions is still unknown but the most favored model for the prompt emission from long bursts (duration > 2 seconds) 
is the gravitational collapse of a massive star to form a black hole28. There is evidence that short GRBs (duration <2 
seconds) arise from a different process and are produced from the merger of two compact objects10,11. The resulting huge 
release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons29. 
There are several theories describing the prompt GRB emission, and which predict vastly different degrees of linear 
polarization (P): 

• P>~80% is generally difficult to achieve within synchrotron emission models but could be achieved for an 
inverse Compton scattering jet viewed just outside the edge of the jet8,16.  

• 20%<P<60% is predicted if synchrotron emission is the dominant source of radiation or as a result of viewing 
the burst from near the edge of the jet12,13,19. 
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• Low degrees of polarization can be expected from hydrodynamic models in which random magnetic fields are 
generated in the shocks with an on-beam viewing geometry. 

There is evidence that the prompt gamma-ray flux from GRBs is highly polarized. The report of a high degree of 
polarization (~80%) in the prompt gamma-ray emission from GRB 0212066,30,35 remains controversial due to the 
difficulties in modeling the instrument response to unpolarised X-rays. In an effort to constrain GRB prompt emission 
models, Willis et al.36 derived polarization limits using the BATSE Albedo Polarimetry System which showed evidence 
of P>35% and P>50% for GRB 930131 and GRB 960924, respectively. However, only two bursts out of a catalog of 
more than 2600 had the required characteristics for the analysis. More recently, tentative polarization measurements 
have been obtained from the spectrometer onboard INTEGRAL for GRB 041219a; around 60% over several energy 
ranges and time intervals but at a low level of significance (~2σ)23 and as high as 98%±33% although instrumental 
systematic effects could not be ruled out15. An instrument designed to make measurements of the polarization of the 
prompt GRB emission would provide a qualitative and quantitative leap forward in our understanding of the mechanisms 
driving GRB explosions. 
1.2 Photoelectric Polarimetry  
The photoelectric effect is theoretically the most sensitive technique available for broadband X-ray polarimetry below 
~100 keV. Not only is it the dominant interaction mechanism in most materials, but it is also a powerful polarization 
analyzer. As a result of the photoionization of an atomic s-orbital, the photoelectron is ejected preferentially with a 
probability distribution dependent on the polarization of the incident X-ray. The angular distribution is modulated as 
cos2φ, where φ is the azimuthal angle measured from the X-ray electric-field vector. The amplitude and phase of the 
modulation provides a measure of the magnitude and direction of the linear polarization of the X-ray. The magnitude and 
orientation of the source polarization can be determined from a histogram of the emission angles.  

1.3 Time-Projection Chamber (TPC) Polarimeters  
Photoelectric polarimetry has recently become more practical for astronomical applications with the development of 
pixelized micropattern gas detectors1,2,3,7, see Figure 1.1, left. A micropattern proportional counter, consisting of a drift 
electrode and a high-field multiplication region, is suspended above a pixelized readout plane. The multiplication region 
shown below is gas electron multiplier (GEM)33. 

 
Figure 1.1 Left: A pixel polarimeter consisting of a micropattern proportional counter mounted above a pixelized detector 

(Courtesy J. Swank). Right: A TPC polarimeter showing the alternate geometry. The drift field is orthogonal to the 
direction of incident X-rays. A drift electrode is shown on the right and the multiplication stage (anode and cathode) on 
the left with a strip detector behind. 

When an X-ray is absorbed in the gas between the drift electrode and the multiplication region, a photoelectron is 
ejected. As the photoelectron travels through the gas it creates a path of ionization that drifts in a moderate, uniform field 
to the high-field multiplication region where an avalanche occurs. The charge finally drifts to the pixel detector where it 
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is read out. The pixels are smaller than the mean free path of the photoelectron and therefore an image of the track can 
be reconstructed and the initial direction of the photoelectron determined. 

Despite the impressive modulations of these polarimeters, the quantum efficiency associated with peak sensitivity is 
rarely as great as 10% for the gas mixtures demonstrated2. The sensitivity is limited by the diffusion of the primary 
ionization electrons as they drift toward the readout plane (Figure 1.1, left). Increasing the detector depth to improve 
quantum efficiency also increases the distance that the electron track must drift, thereby reducing the effective 
resolution, so that there is an optimum depth that maximizes the overall sensitivity. 
The time-projection chamber (TPC) provides a means to overcome the diffusion limit with an alternate detector 
geometry4,5. This geometry decouples the electron diffusion from the quantum efficiency by having the electrons drift 
perpendicular to the X-ray propagation direction (Figure 1.1, right).  

The TPC polarimeter uses a time-projection readout technique that forms pixel images of photoelectron tracks from a 
one-dimensional strip readout as illustrated in Figure 1.2. A micropattern proportional counter is read out with strip 
anodes oriented parallel to the propagation direction of the incident X-rays. Each strip is instrumented with a charge-
sensitive amplifier and a continuously sampling analog-to-digital converter (ADC). The cathode is instrumented to 
provide a data acquisition trigger. A voltage applied between the drift electrode and the cathode establishes a uniform 
electric field in the active volume. 

 
Figure 1.2 Left: The TPC polarimeter uses a simple strip readout and time of arrival to form a pixelized image of 

photoelectron track. Middle: The TPC polarimeter forms an image by digitizing the signal on each readout strip. The 
signal from a 6 keV X-ray, proportional to the charge pulse-train deposited on each strip, is shown on the right. The 
resulting image shows the interaction point, emission angle and end of the track. The size of each circle is proportional 
to the deposited charge in each virtual pixel; the grid is on a 132 µm spacing. 

In a TPC polarimeter, the photoelectron is ejected preferentially in a plane parallel to the drift field. The ionization 
electrons then drift with a constant velocity to the cathode, where the charge is multiplied and collected on the strips.  
The active depth can be increased indefinitely without increasing the drift distance, at least to the extent that the X-ray 
beam is collimated. 

Figure 1.2 illustrates how a track image projected onto the x-y plane is formed by digitizing the charge pulse waveforms 
and binning into pixels. The coordinates are defined by strip location in one dimension, and arrival time multiplied by 
the drift velocity in the orthogonal dimension. 

The advantages of polarimetry techniques using micropattern gas detectors are: 

• Analysis of the tracks enables reliable identification and rejection of charged particles and background events. 
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• The photoelectron emission angle can be reconstructed without a priori knowledge of the interaction point. 
Therefore, it is less susceptible to false modulations arising from asymmetries around the line of sight.  

• This type of polarimeter has a broadband spectral capability of a proportional counter and can, in principal, be 
optimized to provide a sensitive bandwidth between 2 and 100 keV depending on the selected gas and pressure. 

The TPC polarimeter has the following advantages that also make it an ideal detector for measuring the polarization of 
GRB prompt emission: 

• It has a simple and inexpensive readout scheme that is attractive for large volume detectors. 

• It has the capability for much larger quantum efficiencies and therefore, greater polarization sensitivity. 

In the following sections, we will describe the TPC polarimeter concept in more detail and present results from a simple 
prototype device. We describe a Gamma-ray Burst Polarimeter (GRBP) for a mission of opportunity with the U.S. Naval 
Academy; MidSTAR-2, and a Low Energy Polarimeter (LEP) for a SMEX mission concept for a broadband polarimetry 
observatory; POET (POlarimeters for Energetic Transients).  

2. TECHNICAL APPROACH AND METHODOLOGY 
2.1 Detector Design and Readout Electronics 
We have demonstrated the TPC polarimeter concept with a prototype instrument constructed from readily available, off-
the-shelf components. The instrument consists of a micropattern proportional counter, strip readout, and encoding 
electronics. 

The micropattern proportional counter is assembled from two etched stainless steel meshes, that form the cathode and 
anode, separated by an insulating spacer Figure 2.1 (centre).  The dimensions of the stainless steel meshes are 50 µm 
thick with 75 µm diameter holes on 150 µm hexagonal spacing4,5. The meshes are mounted on frames under tension with 
their holes aligned and separated by a 100 µm thick Teflon spacer. The active volume is defined by an opening in the 
spacer (30 mm x 12.7 mm) and the drift electrode 2 cm above the cathode. 

   
Figure 2.1 Left: Readout strips. Centre: The multiplication stage of a micropattern proportional counter. Right: A 

reconstructed track from a 6 keV X-ray interaction in Ne:DME. The red line shows the emission angle derived from a 
one-stage algorithm using the entire track. The green-upper line represents the angle derived from a two-stage 
algorithm and is significantly more accurate; the grid is on a 132 µm spacing. 

The readout strips (Figure 2.1, left) are mounted 500 µm behind the meshes. The strips are on a pitch of 132 µm and are 
aligned with the mesh holes along one of the 60o symmetry axes of the meshes. The readout plane is a standard printed 
circuit board with 96 readout strips that are grouped into four sets of 24, by connecting together every 24th strip. 
Providing that an electron track crosses fewer than 24 strips, the track can be unambiguously reconstructed. This scheme 
can be expanded indefinitely in both length (detector depth) and width (number of sets of strips). 

Each channel of readout electronics consists of a charge sensitive preamplifier, a low-noise fixed gain amplifier, a 
variable gain amplifier and an ADC. Each ADC is read out with a field-programmable gate array (FPGA) and the data 
are transferred to a host PC for event processing. When triggered, the system stores 512 ADC samples from each of 24 
channels, 256 before the trigger, and 256 after the trigger. The system trigger is taken from the cathode signal using a 
zero-crossing timing discriminator. 
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The response of the TPC polarimeter has been measured in several gas mixtures; e.g. 50% neon, 50% dimethyl ether 
(DME) at 460 Torr4,5 and in 83% neon 8% carbon dioxide and 8% carbon disulfide at 480 Torr. The prototype did not 
have an independent means of verifying the drift velocity, so unpolarized 5.9 keV X-rays from an 55Fe source were used 
to make adjustments to the drift field at the few percent level. With an incorrect drift velocity, the track images would be 
distorted such that a false modulation will occur at either 0 or 90 degrees. Histograms of the photoelectron emission 
angles of unpolarized X-rays were fit to the functional form αcos2φ + βsin2φ  and the voltage on the drift electrode was 
adjusted to equalize the parameters α and β to give the expected uniform distribution. This technique will only work to 
the extent that other sources of asymmetry are negligible, which can be confirmed by an equal response to polarized X-
rays at 0 and 90 degrees. Polarized 6.4 keV X-rays were produced by Bragg scattering iron Kα X-rays through 90 
degrees off a silicon crystal. The X-ray beam was collimated and entered the active volume in a direction parallel to the 
readout strips at a height of 4 mm above the multiplication stage. The TPC was mounted on a stage so that it could be 
rotated around the axis of the X-ray beam. Data were taken with the phase of polarization oriented at 0, 45, and 90 
degrees with respect to the electron drift direction. Unpolarized data were collected both before and after the polarized 
data to verify that there was no change in drift velocity during the measurements. 

3. ANALYSIS 
The data were analyzed by reconstructing the emission angle of each photoelectron from the direction of the major axis 
of the second moment of the charge distribution about its barycenter. To increase the polarization sensitivity, the analysis 
is performed a second time using only the information near the X-ray interaction point, where the angular information 
has been least affected by scattering27. The interaction point can be determined if the charge from the photoelectron and 
the Auger electron can be distinguished. This is possible by comparing the density of charge on one side of the 
barycenter to the other, where the higher density side is indicative of the Bragg peak, i.e. the end of the track. See Figure 
2.1 (right). Histograms of the emission angles were then fitted to the expected functional form: 

 N (φ) = A + B cos2 (φ −φo)  [1] 

Where φ0 is the angle of the plane of polarization. The response to 100% polarized X-rays defines the modulation factor, 
µ, given by: 

 µ =
N max − N min
N max + N min

=
B

2A + B
     [2] 

Where Nmax and Nmin are the maximum and minimum of the function, respectively. 

Because the measured modulation can never be negative, even an unpolarized source can give an apparent positive 
polarization. The sensitivity of a polarimeter is therefore expressed as the Minimum Detectable Polarization (MDP), 
i.e., the apparent polarization arising from statistical fluctuations in unpolarized data. The MDP is a function of 
instrumental properties as well as the source strength, S (cts cm-2s-1), and the observing time, t. At the 99% confidence 
level: 

 MDP =
4.29

εµSA
εSA + B

t
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1 2

     [3] 

Where ε is the quantum efficiency, A is the collecting area, and B is the total background rate. However, the ultimate 
sensitivity may not be limited by statistics but by systematic errors created by false modulations that arise from 
azimuthal asymmetries in the instrument. 

4. RESULTS 
The results for Ne:CO2:CS2, shown in Figure 4.1 demonstrates the uniform sensitivity of the TPC polarimeter with 
respect to polarization angle. Fitting the expected functional form to the data (equation [1]), shows consistent 
modulations for all three angles with an average modulation factor of 42.4 ± 1.6 % at 6.4 keV and no false modulation at 
the one percent level, 0.1 ± 1.3 %, in the unpolarized case, see Table 4.1. Similar results are obtained for Ne:DME4,5. 
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Table 4.1 Fit results to the reconstructed emission angles with reduced chi squared values.  The errors stated are one standard 
deviation. 

Data Modulation Error Phase Error 

Unpol 0.1 % 1.3 % - - 
0 39.6 % 2.7 % 2.5º 1.7º 

45 43.3 % 2.7 % 41.3º 1.7º 

90 44.4 % 2.8 % 89.2º 1.5º 

 
Figure 4.1 Results for Ne:CO2:CS2 at 480 Torr . Histograms of photoelectron emission angles for a 6 keV unpolarized 

source, 6.4 keV polarized X-rays with phases of 0°, 45° and 90° with respect to the drift direction from left to right, 
respectively. The modulations and phase are given in Table 4.1. 

5. GRB POLARIMETRY MISSION CONCEPTS 
5.1 GRB X-ray Polarimeter Requirements 
The limited duration and isotropic distribution of GRBs, requires a polarimeter with a large field of view and high 
sensitivity. A time-projection chamber (TPC) polarimeter is the ideal solution. It provides high quantum efficiency, low 
mass and power with unmatched polarization sensitivity over the 2-10 keV band-pass and expected up to 50 keV. To 
optimize the detector for GRB polarimetry, the concept uses a negative ion drift gas20,21,26 in combination with a large 
area micropattern proportional counter. Because the GRB prompt emission is exceptionally bright and expected to be 
highly polarized, successful measurements can be made even with a small instrument. The duration of the prompt 
emission from the GRB itself spans several orders of magnitude from 0.01 seconds to more than 1000 seconds, with 
typical durations of about 20 seconds for a long burst. This allows pre- and post- burst background measurements that 
can be used to minimise systematic effects arising from background variations. The burst flux exhibits rapid time 
variability, however it only needs to be resolved at the ~1 second level for polarimetry measurements in order to 
determine the duration over which the fluence is released. Therefore, the electronics are only required to be fast enough 
to avoid pile-up in the detector, thus reducing the power, although the ability to measure rapid time variability is 
advantageous especially for other bright periodic sources. 

5.2 Detector Design: Negative Ion Drift TPC Polarimeter 
Several parameters can be optimized to maximize the sensitivity of a TPC polarimeter in the required energy band; the 
gas composition and pressure, the geometric area of electron multiplication stage, the distance between drift electrode 
and the multiplication stage, and the spacing of the readout electrodes (pitch).  

Selecting a gas requires consideration of the drift speed, diffusion rate and mean atomic number:  

• A gas with low drift velocity is desirable to achieve high photoelectron spatial resolution with low-speed and 
low-power electronics, as high time resolution (< 1ms) is not required for GRB polarimetry. 
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• A gas with a low electron diffusion rate allows a larger drift distance before the photoelectron track is lost in the 
diffused charge cloud. This enables detectors with larger effective areas.  

• Increasing atomic number increases stopping power and therefore increases the quantum efficiency of a 
detector for a given size and gas pressure. But increasing Z also increases the number of elastic scatters 
compared to inelastic scatters, making it harder to reconstruct the initial direction of the photoelectron.  

• The highest modulation is produced when the incident X-ray energy is more than twice the K-shell energy of 
the absorber.  

For a 2-10 keV polarimeter, a negative-ion drift TPC, using carbon disulfide (CS2) as the charge-carrying ion in neon, is 
an attractive concept because of its extremely low diffusion20,21,26 and slow drift speed allowing the photoelectron track 
to be read out by much slower electronics (factor of ~100 compared to Ne:DME), which require much less power. The 
fact that CS2 has a very low diffusion rate means that the drift-multiplication stage separation can be quite large without 
the diffusion of the charge cloud degrading the track information. This enables larger effective areas for a single 
detector. In addition, the timing calibration of a slower moving charge cloud is likely to be more stable and less 
susceptible to small changes in the environment. A small quantity of CO2 is added to the gas mixture as a quench gas. 
We have characterized the prototype detector in Ne:CO2:CS2 to determine the minimal partial pressure of CS2 (~40 Torr) 
for optimal drift speed and minimal diffusion. Laboratory tests using Ne:CO2:CS2 at 480 Torr with 132 µm readout strips 
produce modulation curves as shown in Figure 4.1. For a higher energy polarimeter, 15-50 keV, an argon based gas 
mixture, rather than neon, is more appropriate. 

5.3 The MidSTAR-2 Mission of Opportunity 
The United States Naval Academy (USNA) Small Satellite Program provides the opportunity to train USNA 
Midshipmen majoring in Aerospace Engineering with hands on satellite development and operations experience. The 
Midshipman Space Technology Applications Research (MidSTAR) project allows them to work on a platform for small 
payloads that can be rapidly adapted to a variety of applications and missions at relatively low cost.  MidSTAR-1 was 
successfully launched on 8 March 2007 with five small payloads from the USNA, the Naval Postgraduate School and 
NASA. 

MidSTAR-2 will use the same basic architecture as MidSTAR-1 with increased performance in one or more areas such 
as power, attitude control, and telemetry bandwidth. The MidSTAR-2 spacecraft is being designed to accommodate four 
small payloads from the Goddard Space Flight Center, one of which is the Gamma-ray Burst Polarimeter (GRBP). Each 
payload will be designed to require less than 6 Watts orbit averaged power, weigh less than 6 lbs and occupy a volume 
less than 23 x 27 x 8 cm3.  

  Figure 5.1. The preliminary GRBP instrument  
Table 5.1 GRBP baseline properties  configuration on MidSTAR-2 

  

Mass < 2.7 kg 

Active Volume 12 x 12 x 5 cm3  

Power (oper/ave) 8 W / 6 W 

Data vol/burst 100 Mbyte 

Field of view 1.0 steradian 

Operating Temp -10 to 25º C 

Active Element Ne:CO2:CS2 650:80:40 

Pressure >760 Torr 

Max. drift distance 3 cm 

Readout pitch 75 µm 

Peak Sensitivity ~3.5 keV 

Proc. of SPIE Vol. 6686  66860Y-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/24/2014 Terms of Use: http://spiedl.org/terms



I'

N
um

be
r 

of
 B

ur
st

s 

\ 
20

%
 p

<
ao

%
: E

m
is

si
on

 

p>
ao

%
: 

In
ve

rs
e 

C
om

pt
on

 
sc

at
te

rin
q 

je
t w

ith
 o

pt
im

um
 vi

ew
in

q 

 

 

MidSTAR-2 will be launched from the Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter 
(ESPA) ring that allows up to six small secondary payloads (SPL) as a ride-along on the EELV. MidSTAR-2 is a Class 
D platform, which will use commercial off-the-shelf components to minimize cost and for rapid turn-around. The 
spacecraft will be an octagonal prism approximately 1 m in length and less than 40 cm in diameter.  The current design 
is a gravity gradient stabilized platform with a slow spin (baseline 13 min/revolution) about the boom axis.  The GRBP 
will be a zenith pointing experiment capable of long exposures to the sky as required by a gamma-ray burst monitor, see 
Figure 5.1. MidSTAR-2 has a possible launch date in mid-2011. 

5.4 MidSTAR-2 Gamma-Ray Burst Polarimeter  (GRBP) design 
Mechanical: The approach is to build a modular instrument based on the prototype TPC polarimeter. The instrument 
will consist of four detector units with a total active geometric area of 12 x 12 cm2. Each detector unit (6 x 6 cm2) will 
have two TPCs that share an X-ray transparent drift electrode (see Figure 5.2, left). A single gas volume and X-ray 
window is shared by two detector units. Table 5.1 summarizes the instrument properties. 

The GRBP housing envelope available on the interior of MidSTAR-2 (8 cm) limits the detector depth to 5 cm in order to 
have sufficient space to bring the signals out. The 3 cm maximum drift distance ensures that the track images will not be 
degraded by electron diffusion as the ionization electrons drift toward the multiplication and readout stages. In order to 
create a uniform electric field (~1% in magnitude and a few degrees in direction) between the drift and the multiplication 
stage, field-shaping electrodes will surround each active volume. 

A 5 cm tall collimator or baffle (limited by the MidSTAR-2 envelope) will be installed in front of the window to limit 
the field of view of the detector to background X-rays to 1 steradian and to protect the window from micrometeoroids. 

Electronics: The readout plane is 5 x 6 cm2, with strip electrodes 5 cm long on a 75 µm pitch to optimize the track 
sampling for an operational pressure of ~770 Torr. In each detector unit, every 24th strip will be tied together. The four 
units require a total of 96 signal-processing chains. To minimize noise, each signal will be pre-amplified by a source-
follower inside the gas volume. The signals will feed-through to the exterior electronics box, where each signal will be 
amplified by a low-power op-amp at the input to an ADC. This enables much more efficient power dissipation 
preventing the detector environment from being perturbed by the heat dissipated by the electronics.   

For the expected drift field, the electron drift velocity is ~40 ms-1. In order to resolve 75 µm pixels in the time dimension 
an ADC with ~500 kHz sampling will be required. The power goal is <10 mW/channel; pre-amp, ADC driver and ADC. 
We have identified the SIDECAR ASIC18 as an available, low power candidate suitable for this application. We will use 
a Field-Programmable-Gate-Array (FPGA) (similar to the design currently used in-house to drive the prototype) to drive 
the ADC readouts, to perform event analysis and to package the telemetry. 

  
Figure 5.2 Left: The GRBP instrument housing solid model (with the FoV baffle and window removed) containing four 6 x 

6 x 5 cm3 detector units. Two detector units occupy a single gas enclosure. The electronics will be mounted in the 
remaining volume outside of the gas volume. Right: Polarization Sensitivity of the GRBP (assuming 80% duty cycle) 
for two modulations factors; 0.43 (dashed)  as measured at 6.4 keV and 0.2 (solid) the lower bound expected at 2 keV. 
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Two controllable high voltage supplies will be used: A negative supply for the drift electrode to allow adjustment of the 
drift velocity and a positive supply to control the anode and the strips relative to the grounded cathode to adjust the gain. 
The negative supply will also provide the voltages for the field cage around each detector. 

Data Processing and Operations: For every event that triggers the GEM cathode, the flight software will read the 24 x 
24 array of pixels from the ADCs and push the data into a FIFO buffer. The buffer will be sized to hold ~15 minutes of 
background and the events from the brightest, longest duration burst. As new data are pushed into the buffer, old data 
will be pushed out and nominally discarded until the software detects a burst. During non-burst periods, a background 
event will be telemetered to the spacecraft. These background events will be used on the ground for drift speed 
calibration and to define the sensitivity. 

The software will be monitoring the background countrate. When the countrate increases to a designated value above the 
background, the software will switch into a burst mode. Data stored in the buffer from the prior ~5 minutes will be 
stored and a further ~10 minutes of data (depending on the brightness of the burst) will be pushed into the buffer. The 
flight software will process the events to produce quick-look (QL) lightcurves and time-stamped reconstructed emission 
angles. These data will be telemetered to the spacecraft first to ensure that the high priority data are downlinked to the 
ground successfully. Following the QL data and prior to the next burst, the 24 x 24 event data will be telemetered, to 
allow post-processing and optimization of thresholds on the ground. 

5.5 GRBP Polarization Sensitivity 
To understand the GRBP configuration that will achieve the lowest possible minimum detectable polarization for GRBs 
in the 2-10 keV energy band, and to optimize the instrument concept with regard to gas composition, pressure, window 
thickness and drift distance, we selected GRBs from the HETE-2 catalog from the beginning of the mission to 13 
September 2003 which were detected both in the wide-field X-ray monitor (WXM; 2-25 keV) and the French Gamma 
telescope (FREGATE; 6-400 keV). 45 bursts satisfied these criteria31,32. The fluence in the 2-10 keV energy band was 
determined from a spectral fit to the data from each burst and a table of T100 (the duration for 100% of the flux to be 
emitted) and average flux over the T100 duration was created.  

Using a power-law spectrum (valid for energies below Epeak) of photon index 1, the photon spectrum over the 2-10 keV 
energy band was derived for a flux of 1 x 10-8 erg cm-2 s-1. The instrument response to the photon spectrum, for the 
instrument parameters in Table 5.1, was calculated and then scaled for the flux and T100 for each of the 45 HETE-2 
bursts. The Instrument response to a background spectrum9 was also calculated over the T100 duration. 

The MDP for each of the 45 bursts was calculated using two modulations factors; the first, 0.43, is the measured value 
from the prototype TPC at 6.4 keV, the second value of 0.2, is to bound the sensitivity as a lower modulation factor is 
expected at lower energies27. Accounting for the HETE-2 FoV (0.9 str) and the time period over which the catalog was 
obtained (~ 3 years operational time including periods in the SAA), and scaling the distribution of bursts to the GRBP 
field of view, the number of bursts for a given MDP was determined for the mission life-time. Figure 5.2 (right) shows 
the expected number of bursts that will be detected if the polarization is above the sensitivity limit (MDP). To show the 
significance of the measurements the expected GRB polarization for several of the leading models is shown. The 
maximum observable polarization expected for synchrotron emission is 60%12,13,19 whereas for inverse Compton models, 
the maximum polarization can be as high as 100% for a narrow jet with optimum viewing angle8,16. This clearly 
demonstrates that the GRBP will be able to make ground-breaking measurements, distinguishing between models. The 
GRBP will measure the polarization of 10 GRBs with an MDP of 10-50%. 

5.6 POlarimeters for Energetic Transients (POET) 
POET (POlarimeters for Energetic Transients) is a small explorer (SMEX) concept for a broadband polarimetry 
observatory and consists of two types of polarimeter. A high energy Compton scattering polarimeter, GRAPE (Gamma-
RAy Polarimetry Experiment17,22) with a bandpass of 50-500 keV and two photoelectric time-projection chamber 
polarimeters optimized for two energy ranges; 2-10 keV and 15-50 keV. The concept for the instrument configuration on 
the optical bench is shown in Figure 5.3. 
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POET will explore many areas of X-ray and gamma-ray polarimetry; e.g. GRBs, solar flares, SGRs, bright persistent 
sources, phase resolved polarimetry of bright transient sources and, in addition, will provide broadband (2-500 keV) all-
sky monitoring. For this paper, we focus on the GRB polarization sensitivity. POET, with its high timing resolution 
(msec) and broadband spectral capabilities will provide information about the prompt GRB emission that cannot be 
obtained from current prompt and afterglow observation strategies without polarization measurements: 

• The composition of GRBs (baryonic or Poynting-flux dominated). 

• The radiation mechanism of the prompt gamma-ray emission (synchrotron or inverse Compton). 

• The small-scale geometry of the prompt emission region. 

These questions could be answered with a good sample of polarization measurements of GRB prompt emission from a 
mission such as POET. 

GRAPE: The GRAPE concept and design has been described in detail elsewhere17,22. The baseline design for the POET 
GRAPE instrument is an 8 x 8 array of GRAPE modules using NaI scintillators as calorimeters and plastic scintillator as 
the scattering medium. The separate readout design places all the plastic elements on two-inch flat-panel photomultiplier 
tubes, with separate readouts of calorimeter elements, to avoid cross-talk between adjacent scatterer and calorimeter 
elements. The GRAPE configuration for the POET mission is given in Table 5.2 and the resulting GRB sensitivities are 
shown in Table 5.2 and Figure 5.3. Figure 5.3 shows the number of bursts of a given fluence from the BATSE catalogue 
that will be detected by GRAPE versus the limit in polarization sensitivity for those bursts, i.e. the minimum detectable 
polarization (MDP). If the burst polarization is greater than the MDP then GRAPE will provide a definitive polarization 
measurement, if the polarization is below the MDP then only an upper limit will be obtained. If the polarizations of the 
detected GRBs are greater than 30%, GRAPE will measure the polarization of 50 bursts in a year. If the GRB 
polarizations are as low as 10% then GRAPE will measure the polarization of 14 bursts/year. 

Low Energy Polarimeter (LEP): The LEP design and operational concept is based on the design described for the 
GRBP on the MidSTAR-2 mission (Section 5.4). The larger spacecraft available for a SMEX mission yields higher mass 
and power allocations and thus enables an instrument with larger volume and is therefore more sensitive. For POET, the 
two 2-10 keV LEP modules will have orthogonal 1-D coded-masks aligned with the strip readout in order to provide 
course position information (~3 degrees). This will be used to correct the polarization angle for off-axis GRBs. The LEP 
design parameters for the 2-10 keV and the 15-50 keV instruments are given in Table 5.2 and the resulting sensitivity to 
GRBs is shown in Table 5.2 and Figure 5.3. Figure 5.3 shows the number of bursts from the HETE-2 catalogue of a 
given fluence that will be detected by the two LEP instruments versus the limit in polarization sensitivity for those bursts 
(the analysis is described in more detail in Section 5.5). If the burst polarization is greater than the MDP then LEP will 
provide a definitive polarization measurement, if it below then only an upper limit will be obtained. In a year, if the 
detected GRBs are polarized more than 30% then the 2-10 keV LEP will measure the polarization of more than 35 
bursts. If the GRB polarization is as low as 10% then the 2-10 keV LEP will measure the polarization of 17 bursts. 

Table 5.2 Preliminary instrument design and sensitivity summary for POET 

 Low Energy LEP High Energy LEP GRAPE 
Energy Range 2-10 keV 15-50 keV 50-500 keV 
Active Area 35x35 cm2 35x35 cm2 64 x 64 cm2 
Active Depth 30 cm 30 cm 5 cm 
FoV 1 str Coded Ap. 1 str >π str 
Active material Ne:CO2:CS2 Ar: CO2:CS2 LaBr3/CsI 
Window Be or Mylar Be or Mylar N/A 
Pressure 1.1 atm 3 atm N/A 
# Burst/yr MDP<30% >35 20 50 
# Bursts/yr MDP<10% 17 6 14 
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Figure 5.3 Left: The instrument layout on the POET optical bench. Right: The number of bursts expected to be detected for 

a given sensitivity (MDP) for GRAPE (dashed) and the high (dot-dash) and low (solid) energy LEP. To show the 
significance of the measurements the expected GRB polarization for several of the leading models is shown. 

6. CONCLUSION 
An instrument designed to make measurements of the polarization of the prompt GRB emission would provide a 
qualitative and quantitative leap forward in our understanding of the mechanisms driving GRB explosions and lay the 
path for future X-ray polarimetry measurements. 

We have demonstrated that the time-projection chamber polarimeter is ideally suited to wide field of view, large area 
applications for the 2-10 keV bandpass and that its operation can , in principal, be extended up to 50 keV by selection of 
the appropriate gas and pressure. The GRBP, a small instrument with an active area of 24 x 24 cm2 and an active depth 
of 6 cm, will measure 10 bursts with a sensitivity limit of 10 - 50% over the 2-10 keV bandpass during the two years of 
operation of MidSTAR-2. 

POET, is a larger mission concept for a small explorer, will provide highly sensitive broadband polarimetry with 
simultaneous spectroscopy and photometry, by the use of a high energy Compton scattering polarimeter (GRAPE; 50-
500 keV) and two types of Low Energy Polarimeter (LEP) optimized for 2-10 keV and 15-50 keV. This mission would 
measure the polarization of 40-50 GRBs per year with a sensitivity limit of 30% and 15-20 GRBs with a sensitivity limit 
of 10%. We are investigating the possibility for telemetering rapid positions to the ground in order to obtain the red-
shifts from ground based follow-up which would provide additional constraints on the GRB models. 

In addition to polarization measurements of GRB prompt emission and other bright X-ray transients and persistent 
sources, both missions would demonstrate the TPC polarimeter capabilities in preparation for larger future missions: e.g. 
Constellation-X enhancement package for faint for persistent sources14 or wide field of view instruments for EXIST.  
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