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Neutral hydrogen clusters are grown in ultracold helium nanodroplets by successive pickup of
hydrogen molecules. Even-numbered hydrogen cluster cations are observed upon electron-impact
ionization with and without attached helium atoms and in addition to the familiar odd-numbered
H,*. The helium matrix affects the fragmentation dynamics that usually lead to the formation of
overwhelmingly odd-numbered H,*. The use of high-resolution mass spectrometry allows the
unambiguous identification of even-numbered H," up to n=120 by their mass excess that
distinguishes them from He, ", mixed He,,H,*, and background ions. The large range in size of these
hydrogen cluster ions is unprecedented, as is the accuracy of their definition. Apart from the
previously observed magic number n=6, pronounced drops in the abundance of even-numbered
cluster ions are seen at n=30 and 114, which suggest icosahedral shell closures at Hs*(H,);, and
H¢"(H,)s4. Possible isomers of Hg" are identified at the quadratic configuration interaction with
inclusion of single and double excitations (QCISD)/aug-cc-pVTZ level of theory © 2008 American

Institute of Physics. [DOI: 10.1063/1.3035833]

I. INTRODUCTION

Hydrogen clusters have attracted interest from diverse
communities. One of the earliest goals has been the produc-
tion of intense beams of hydrogen clusters at high kinetic
energies in order to fuel thermonuclear devices."* As of to-
day, cluster beams have been successfully injected into the
HL-1M tokamak and HT-7 superconducting tokamak.>* An-
other interesting development has been the observation that
nuclear fusion can be initiated by heating deuterium clusters
with femtosecond lasers; this technique ultimately may lead
to the development of tabletop neutron sources.

H,* ions play an important role in the chemistry of in-
terstellar clouds as efficient protonators of neutral molecules,
and they may act as traps for noble gas atoms in astrophysi-
cal objects.ﬁ’7 H,D*, rapidly formed from H;" by exothermic
proton-deuteron exchange, efficiently deuterates other
molecules.®

The quantum nature of hydrogen clusters has been an-
other area of interest.”' Path-integral calculations suggest
that small parahydrogen clusters are superﬂuid“’12 although
the possible quenching of superfluidity in clusters containing
a “magic number” of molecules is a controversial issue.>*
Experiments demonstrate that hydrogen clusters embedded
in helium droplets remain fluxional at temperatures well be-
low the bulk triple point of hydrogenlsf18 but direct experi-
mental evidence for superfluidity is still lacking.19 The tran-
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sition of confined molecular hydrogen clusters to a metallic
state has been subject of recent theoretical studies.”’

When free hydrogen clusters are ionized by electrons or
photons, one observes predominantly odd-numbered cluster
ions HnJ'.ZF28 The low intensity of even-numbered H," arises
from the large exothermicity of the reaction

H,"+H, — H;"+H, (1)

for which an exothermicity of 1.727 eV can be computed
from the H,* bond strength® and H, proton affinity.”’ The
hydrogen dimer (H,), is very weakly bound, therefore a
similarly large reaction energy is released after vertical ion-
ization of (H,),.”" According to an ab inifio direct dynamics
calculation, vertical ionization of the H, dimer, trimer, or
hexamer leads to rapid ejection of an energetic hydrogen
atom and a vibrationally hot H;*.”* This reaction will be
quickly followed by emission of one or more H,. Indeed,
electron-impact ionization of neutral (H,),, clusters that were
size-selected by a diffraction grating results in H;" as the
most abundant fragment ion for parent sizes up to m= 17

The prevalence of odd-numbered H,," in experiments has
stimulated various theoretical studies of their ground state
geometric structures, isomeric structures, dissociation ener-
gies, the occurrence of particularly stable sizes (magic
numbers),34’44 vibrational frequencies,35’40’43’45’47 and finite-
temperature properties.48 Very much less is known about
even-numbered H,". Their production up to H,," upon ion-
ization of preformed neutral hydrogen clusters has been
1rep01rted2l’23’49 but the low abundance and limited experi-
mental mass resolution make it difficult to rule out possible

© 2008 American Institute of Physics
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contributions from background ions, or cluster ions contain-
ing deuterium.” In 1979 Mathur and Hasted! reported the
observation of H,,", H,,", and H,," in a hollow electron
beam that traps positive ions; the absence of other even-
numbered cluster ions and the low mass resolution render
this observation questionable. Recent reports on even-
numbered D,* up to n=12 (Ref. 27) and 14 (Ref. 28) formed
upon electron-impact ionization of free deuterium clusters
are not conclusive either because of the low mass
resolution.>

The most compelling identification of even-numbered
hydrogen cluster ions so far was reported by Kirchner and
Bowers™ who produced H,", Hs*, Hg', and H,," in a high-
pressure drift-tube ion source and identified them by high-
resolution mass spectrometry. H,* was the most intense
even-numbered cluster ion (5% of Hs*). Hg* and H,," were
at least an order of magnitude weaker than Hy', and H," was
weaker by another two orders of magnitude.

We report here the synthesis of even-numbered H," at
much higher yield, and much larger in size, by electron-
impact ionization of neutral hydrogen clusters embedded in
ultracold helium droplets. Even though helium is in many
respects an ideal matrix because it minimizes solvent-
induced perturbations, it does affect the reaction dynamics
that are initiated by ionization.”*>® We attribute the observed
increase in the relative yield of even-numbered cluster ions
to a caging effect; rapid escape of a hyperthermal hydrogen
atom from the highly excited hydrogen cluster ion is sup-
pressed by impulsive collisions with the surrounding helium
atoms. The high-resolution mass spectrometer allows pure
H," to be distinguished from other ions that have the same
nominal mass-to-charge ratio. For example, at m/g=20 Th
we observe, and resolve, Hes*, HeyH,", HesHg", HeoH )",
HeH, ", H,,", and “°Ar** (see Fig. 1). The relatively large
intensity of the observed even-numbered cluster ions ex-
cludes contamination from deuterated species, and the abun-
dance of mixed helium-hydrogen cluster ions is minimized
by optimizing the cluster source conditions. We are thus able
to identify pure even-numbered H," up to n=120, greatly
exceeding the previous limit of n=10 (Ref. 53) beyond
which computed binding energies become extremely small.”’
In addition to the previously reported abundance maximum
at H6+ we observe anomalies at n=30 and 114, which we
tentatively assign to icosahedral shell closures at Hy"(H,),
and Hg*(H,)s4. The structure of the presumed cluster core,
H,", is explored at the quadratic configuration interaction
with inclusion of single and double excitations (QCISD)/
aug-cc-pVTZ level of theory.

Il. EXPERIMENTAL SECTION

Measurements are performed with a He cluster source, a
pickup cell containing the hydrogen gas, a conventional
Nier-type electron source for electron ionization, and a high-
resolution two-sector field magnetic mass spectrometer. De-
tails have been described elsewhere.”®®' Neutral helium
droplets are formed by expansion of helium gas at a pressure
of 22 bar into vacuum through a nozzle with an orifice of
5 pm and adjustable temperature. In this work the tempera-
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FIG. 1. (Color online) Mass spectra of ions near m=20 Da recorded with
different hydrogen pressures in the pickup cell. The spectra are displaced
vertically for greater clarity. He;" and nominally isobaric He,H,*, He;Hg",
He,H,,*, HeH (", and H,," are clearly resolved; an argon impurity gives rise
to “0Ar2*, H,," dominates at highest hydrogen pressure.

ture was set to 9.5 K; the mean size of the helium droplets is
estimated to be a few 10*%2 1 cm downstream from the
nozzle, the droplets pass a skimmer with a diameter of 0.8
mm. 2 cm further downstream, they enter a pickup cell, kept
at ambient temperature, where they are doped with molecular
hydrogen (nominal purity of 99.999%). The electron source
of the mass spectrometer (Varian MAT CHS5-DF of the re-
versed Nier—Johnson-type B-E geometry) is operated at a
current of 10 nA and an energy resolution of about 1 eV.
Electron energies are either 110 or 200 eV; values are speci-
fied in the text. The base pressure in the ion source is 2
X 1073 Pa. Cations are extracted from the ion source by a
weak electric field through a potential drop of 3 kV into the
mass spectrometer. In the present work, the resolving power
was m/Am=1000 (Am=full width at half maximum).

lll. RESULTS
A. Experimental results

Even-numbered hydrogen cluster ions are readily ob-
served in mass spectra of helium droplets doped with hydro-
gen. Their unambiguous identification by high-resolution
mass spectrometry is demonstrated by the spectra in Fig. 1,
which were recorded with an electron energy of 200 eV and
various pressures of hydrogen in the pickup cell. Near mass
20 Da we observe the series Hes_H, " with 0=x= 5.9 The
mass difference between adjacent ions in this series is
mye—4my=0.0287 Da.®® At the highest hydrogen pressure
the intensity of H,," clearly exceeds that of mixed Hes_,H, *
ions.

Ion series qualitatively similar to the one shown in Fig. 1
are observed around 21, 22, and 23 Da. The heaviest isoto-
pomers in these series correspond to H,,", H,,", and H,;",
respectively. Other peaks in the series are due to mixed
helium-hydrogen complexes. The series demonstrate that
even-numbered as well as odd-numbered hydrogen cluster
ions can be formed with helium atoms attached to them.

Two other sections of mass spectra are reproduced in
Fig. 2; they further illustrate the identification of even-
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FIG. 2. Sections of mass spectra showing odd- and even-numbered H,*
(vertical lines), He," (triangles), and impurities N," and O, (full dots).
Other mass peaks, immediately to the left of H,*, are mostly due to mixed
He H,* and hydrocarbon background.

numbered H,*. Background ions (N,*, O,", marked by full
dots) and He," (triangles) provide an accurate mass calibra-
tion. Vertical lines indicate the expected position of H,* cal-
culated from this calibration. Thanks to the large mass ex-
cess of H (1.007 825 Da), all but the very smallest HnJr
cluster ions are well separated from hydrocarbon ions whose
masses are close to integer values.

The mass resolution is not sufficient to distinguish deu-
terated cluster ions H,_,D* from undeuterated species H,",
which are heavier by 0.001 55 Da. However, the low
(0.015%) natural abundance of D excludes any significant
contributions to our data. For example, the statistical ratio of
H,sD*:H,," would be 0.4%, whereas the observed abun-
dance ratio Hy,":H,y" is 5%. Another hint against the con-
tribution of deuterated species to our spectra is the approxi-
mately constant abundance ratio between even- and odd-
numbered cluster ions. In contrast, the statistical probability
that H,_,D* contributes to H," would increase with size n.

We have recorded several other mass spectra of hydro-
gen clusters. One set, measured with a hydrogen pressure of
5X 1073 Pa and an electron energy of 110 eV, was carefully
analyzed by fitting Gaussians to all relevant mass peaks.
From this analysis we obtain the size distribution of H,*
presented in Fig. 3. The upper panel displays the distribution
of even-numbered cluster ions. We note a maximum at Hg*
and an abrupt drop beyond H,,*. The full distribution of odd
and even sizes is shown on a logarithmic scale in the lower
panel. The statistical significance of local intensity anomalies
between n=35 and 93 has not yet been confirmed. However,
an abrupt drop in the distribution of even-numbered cluster
ions at n=114 is significant; it will be discussed in Sec. IV.
The abundance of even-numbered cluster ions relative to the
next smaller odd-numbered cluster ions average 4%. For Hg"
versus H5+ the ratio reaches a value of 11%, a factor 2 larger
than reported by Kirchner and Bowers.”

The ion yield curve of Hy* versus electron energy pre-
sented in Fig. 4 shows an onset near the threshold for pro-
duction of metastable He* (20.6 e€V), and an increase in its

J. Chem. Phys. 129, 224306 (2008)
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FIG. 3. (Color online) Upper panel: Size distribution of even-numbered
hydrogen cluster ions. Lower panel: Size distribution of even-numbered
(solid bars) and odd-numbered (dashed bars) hydrogen cluster ions plotted
on a logarithmic scale.

slope at the ionization energy of helium (24.56 eV).*® Thus,
the Penning ionization as well as charge transfer from He*
contribute to the Hy" ion yield. Direct ionization of hydrogen
clusters would feature a lower onset because the adiabatic
ionization energy of H, is only 15.428 eV;*" its contribu-
tion is below the detection limit. This observation agrees
with experiments on other clusters embedded in helium
droplets which show that direct ionization is extremely
inefficient.®>¢%7

For the interpretation of the observed magic numbers
n=30 and 114, the nature of the presumed ionic core, H6+, is

6 H6+
IE(He)
N
<
o 41
2 AE(He)
c IE(H,)
o
2F
0 IA‘ T T
15 20 25
Electron energy (eV)

FIG. 4. (Color online) Ion yield of Hy* as a function of electron energy
recorded at a hydrogen pressure of 2.7 X 10~ Pa. Energy thresholds for the
formation of H,", He*, and He* are indicated.
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FIG. 5. Metastable dissociation of H¢" into H,*, H;*, H,", and Hs" in the
second field free region of the two-sector-field mass spectrometer (MIKE
scan). Spontaneous (unimolecular) as well as collision-induced reactions
contribute to the signal.

of relevance.”’ We explore its dissociation channels by re-
cording mass analyzed ion kinetic energy (MIKE) spectra.
H* is selected by the magnet; its metastable dissociation
into fragment ions in the second field free region between the
magnetic and electric sector is measured by scanning the
electric sector field voltage. The pressure in the second field
free region is slightly below 1X 107> Pa; thus the MIKE
spectrum may contain contributions from collision-induced
fragmentation of Hy".%

A MIKE spectrum is displayed in Fig. 5. The major
product ion is H3+; its metastable fraction (i.e., the ratio of its
intensity to the intensity of the parent ion) is 1.4 X 107. H,*
is weaker by a factor 6. H," (that merges into a much stron-
ger satellite peak caused by interference with another decay
channel®’’) and H" are weaker by another order of magni-
tude. From the width of the Hy" peak we deduce’" an average
kinetic energy release (KER)=57*2 meV assuming one-
step dissociation into H;*+H; (we cannot identify neutral
products). It is more likely that the reaction proceeds in two
distinct steps, emission of a H atom followed by loss of H2.32
In this case, the measured width of the H;" fragment ion
peak would correspond to a slightly larger (KER).

S1(0eV)

©
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1
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B. Hy*

From an early ab initio study, Wright and Borkman’?

concluded that Hg" consists of a nearly equilateral Hy" core
surrounded by neutral H and H, at two of its apices (C;
symmetry); the ion was bound with respect to Hs*+H by
only 0.05 eV. However, Montgomery and Michels ? identi-
fied a more stable isomer consisting of a central H," weakly
bound to two H, molecules (D,,). More recently, Kurosaki
and Takayanagi " optimized the geometries of H," at the
MP2/cc-pVTZ level of theory75 76 and calculated MP4
(Mgller-Plesset perturbation theory including single to qua-
druple excitations)””"® energies. They found that the D,,
structure lies 0.17 eV below Cj; the latter is separated from
the ground state configuration by a small (0.02 eV) barrier.
The D,; structure has been confirmed in an electron spin
resonance study of hydrogen ion radicals produced by radi-
olysis of solid parahydrogen.79 The two outer H, molecules
were found to rotate almost freely, in agreement with a path
integral molecular dynamics study.so

We have searched the Hg" potential energy surface for
other possible isomers that might serve as cores for the co-
ordination of additional H, molecules. We did this by gener-
ating both regular structures and random structures. The
sample of about 30 configurations was optimized at the
QCISD (Ref. 81)/aug-cc-pVTZ (Refs. 82 and 83) level of
theory, probably the most accurate level used on these sys-
tems so far.

Our geometries converged to the six minima on the po-
tential energy surface shown in Fig. 6. The C; isomer (S2)
lies 0.15 eV above the lowest-energy structure (S1, D,,) in
good agreement with the value (0.17 eV) calculated by
Kurosaki and Takayanagi.74 The Mulliken and natural popu-
lation analysis (NPA) of partial charges and spin populations
listed in Table I show that the positive charge in S1 is quite
delocalized, in agreement with a previous study.57 In con-
trast, in S2 the positive charge is mostly concentrated on the
H;* core which is very weakly bound to the outer H, and H.

Structure S3 is only slightly higher in energy than S2. It

S3 (+0.22 eV)
6 " 1:467 ___0.939@ 2357
1.556 0.758 g i 1.467 60 20 -2:351 6

939‘ N

6 “.89
S4 (+0.77 V) S5 (+1.85 V) S6 (+3.03 eV)
6 6 G 1.845 @347 -
4 ,0315 1.762 0.962 ,fo) 1845 o7 0:,347 4
0. - 1:52 y 11 1127 c O 84
é o @ 1»7629 % 61'1;127 18457 g0 @ i:849 1 34&;
1.845

'Y

‘ 984

FIG. 6. (Color online) Six minima and their energies relative to the most stable one (isomer SI) on the potential energy surface of Hy*, computed at the

QCISD/aug-cc-pVTZ level of theory. Bond lengths are in angstroms.
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TABLE I. Mulliken and NPA partial charges and spin populations (HF/aug-cc-pVTZ calculations). Numbers in the first column specify the H atom, see Fig.

6. Structural data may be obtained from the authors upon request.

S1 (Dyy) 2 (C) S3 (Cy,) S4 (Cy) S5 (Ca) S6 (D)
H MULL NPA SPIN MULL NPA SPIN MULL NPA SPIN MULL NPA SPIN MULL NPA SPIN MULL NPA SPIN
1 032 020 0.29 039 024 0.03 0.07  0.06 0.00 0.44 028 000 018 0.15 0.01 029 032 0.00
2 032 020 0.29 0.13 025 0.05 0.07  0.06 0.00 0.45 028 000 0.18 0.15 0.01 0.11 0.09 0.26
3 0.09 0.15 0.11 0.31 032 0.02 0.18 033 0.00 0.00 034 000 015 0.19 044 0.11 0.09 0.26
4 0.09 0.15 0.11 0.05 005 0.00 034 026 0.02 -0.04 0.13 060 0.18 0.15 0.03 029 032 0.00
5 0.09 0.15 0.11 0.05 005 0.00 034 026 0.02 -0.04 0.13 060 0.18 0.15 0.03 0.11 0.09 0.26
6 0.09 0.15 0.11 0.08  0.10 0.90 0.01 0.01 097 0.18 -0.17 -0.19 0.15 0.19 0.44 0.11 0.09 0.26

may be best characterized as Hs"+H. It is not quite a sym-
metric variation of S2 because the single H is further away
from the central H; unit. A structure consisting of one linear
and one triangular Hs unit (S4) as well as the trigonal anti-
prismatic (S5) and prismatic (S6) structures are all signifi-
cantly higher in energy than S3. Whereas S1-S4 are true
locally stable isomers, S5 and S6 are stable only when con-
fined to their symmetries (C,;, and D3, respectively).

IV. DISCUSSION

Although the thermodynamic stability of even-numbered
hydrogen cluster ions already was pointed out by Wright and
Borkman’? in 1982, these species have, with the exception of
H6+,53’79 largely escaped experimental identification. The
main reason for the difficulty of identifying even-numbered
H," in mass spectra of hydrogen clusters is the fact that a
large fraction of the energy that is released upon vertical
ionization is transferred to a hydrogen atom that will thus
leave the ionized complex within <1 ps.32 Another, more
technical problem is the presence of deuterium; clusters
H,_,D* with an odd number of atoms may easily be mis-
taken for even-numbered H,* because both have the same
nominal mass, n Da. An analogous problem applies to ex-
periments with deuterium clusters contaminated with traces
of g 2728

In the present study we were able to use a high-
resolution mass spectrometer to identify even-numbered H,,"
up to n=120. Two factors made this possible: First, the high
mass resolution easily distinguishes H! from most back-
ground ions, helium cluster ions, and mixed HexHy+. The
large mass excess of the hydrogen atom (1.007 825 Da)
separates H," from hydrocarbons C,H," up to n=128, where
the mass of H," again approaches integer values n+1 Da.
Second, the hydrogen clusters are grown in helium nano-
droplets. An ab initio direct dynamics calculation indicates
that a free hydrogen cluster such as Hg will, upon vertical
ionization, eject a hydrogen atom within =100 fs; the atom
will carry a substantial fraction of the reaction energy.32
Hence, in order to enhance the relative yield of even-
numbered cluster ions formed in a helium droplet, the matrix
will have to suppress the separation of the hydrogen atom
from the charged complex within the first 100 fs.>* This kind
of rapid energy exchange between the nascent even-
numbered hydrogen cluster ion and the helium matrix is akin
to the impulsive processes that are responsible for caging of
photoexcited I,” and HCI in inert gas clusters.* ™ In this

context it is worth mentioning that the first observation of
unprotonated water cluster ions (H,0),* was achieved by
synthesizing neutral water clusters complexed with argon
atoms,*® and later by embedding water clusters in helium
drople:ts.67’89_91 We also note that ionization of molecules
embedded in helium is a multistep process.92 First a helium
cation is formed; after rapid charge migration the cation
transfers the charge to the molecule. A large amount of en-
ergy is released in the process. Nevertheless, dissociation of
the nascent molecular cations will, under certain conditions,
be strongly quenched by the helium matrix.”>**

However, one should note that the vibrational excitation
energy in the observed cluster ions, even- and odd-numbered
alike, is not necessarily low. The neutral precursors are
clearly cold, at a rovibrational temperature of 0.37 K, be-
cause they form inside helium droplets.95 Figure 1 demon-
strates that under certain source conditions we can form hy-
drogen cluster ions that are quite cold as well else they
would not form long-lived complexes with helium. However,
the abundance spectrum in Fig. 3 is deduced from hydrogen
cluster ions that are not complexed with He, see Fig. 2. An
upper bound to their temperature may be estimated from the
evaporative model.”® Essentially, the temperature of a freely
evaporating cluster of modest size”” will be proportional to
its evaporation energy. Once the first solvation shell is filled,
the evaporation energies of charged and neutral clusters will
be similar. Comparison with expected and measured
temperatures98 of neutral neon, argon, and other clusters
leads to an estimate of =10 K for the temperature of H,",
n>30, in our experiment.

Cluster ions with helium atoms attached will be colder
whereas small, pure hydrogen cluster ions may be warmer.
When molecular complexes embedded in helium droplets are
ionized, the major products are usually molecular ions (or
fragment ions) with no, or very few, helium attached.”
These ions cannot form by complete vaporization of the he-
lium unless the initial droplet is exceedingly small (the bind-
ing energy of helium is 0.616 meV per atom in the bulk;
hence no more than 2000 atoms can be evaporated for every
1 eV of excess energy). Rather, the bare molecular ions
formed are ejected from the droplet in an athermal process.
Therefore it is not surprising that the H¢" ions formed in the
present study may carry sufficient vibrational energy to un-
dergo spontaneous (unimolecular) dissociation about 5 us
after their formation and thus contribute to the MIKE spec-
trum, Fig. 5. The spectrum differs strikingly from the spec-
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trum reported by Kirchner and Bowers;”’ they found Hy* and
H,* as the major metastable product ions of H,". They sepa-
rated the contributions from spontaneous (unimolecular) and
collision-induced dissociation, and deduced branching ratios
of 80:20 for the former and 40:60 for the latter. The average
KER for dissociation into Hy"+H was 38 meV.

What causes the striking differences between our MIKE
spectra and those reported by Kirchner and Bowers?” We
can imagine three reasons. First, the parent ions are produced
in fundamentally different ways;68 the differences will affect
the excitation energies in the metastable ions, perhaps also
their geometric structure. Second, both studies employed
two-sector-field magnetic mass spectrometers. These instru-
ments are able to mass-resolve H;D* and Hy" ions> but the
resolution is greatly diminished in the MIKE mode,'” and
H,D* may contaminate the metastable spectrum of H".
Third, collision-induced reactions may contribute to the
metastable ion signal. We cannot separate the contributions
of collision-induced and unimolecular reactions although the
rather large metastable fraction of H;" suggests that this ion
is mostly due to unimolecular dissociation. Even more com-
pelling, neither unimolecular nor collision-induced reactions
are found to favor the H3+ product ion,53 thus reason 3 can-
not account for the observations. In our view, the most likely
explanation is due to differences in the geometric structure of
the Hy" ions. Unfortunately, not enough is known about re-
action paths and critical energies for isomerization and dis-
sociation of H6+; hence we refrain from further discussion of
this topic.

An intriguing observation in Fig. 3 is the abrupt drop in
the abundance of even-numbered H,* beyond n=30 and 114
indicating geometric shell closures. Evidence for shell-
closings in odd-numbered hydrogen cluster ions has previ-
ously been concluded from theoretical studies, 3038414248
These clusters consist of a tightly bound H;* core surrounded
by H, and are therefore best described as Hy*(H,),,.. The first,
mainly chemically bonded solvation shell closes at m=3 and
the second, mostly physically bonded shell at m=15.
Anomalies in cluster ion size distributions,M’zs’28 collisional
dissociation cross sections,lOlleZ thermochemical stability,103
and IR absorption spectra104 lend support to the existence of
geometric shells but entropic effects may also play a role.**

The magic numbers observed in the present work for
even-numbered clusters are different. Can they be related to
a structural model? In the absence of directional bonding and
electronic shell effects'® one frequently observes geometric
shell closure when the number of building blocks reaches
m=12 in the first icosahedral shell around the ionic core,
m=42 in the second, m=92 in the third, and so on. %7109 The
numbers may be slightly different depending on the exact
nature of the ionic core (see Refs. 110-112 and references
therein) but they readily appear for inert gas clusters' > as
well as molecular clusters of CO and CH4.”5’116 The ob-
served magic numbers n=30 and 114 do indeed match the
number of hydrogen atoms needed to complete icosahedral
shells around a H¢" core; they correspond to cluster ions
Hy"(H,) 1, and Hg' (Hy) 15(Hy) s

While our ab initio calculations have identified some
possible new isomers of Hy", they failed to reveal a low-

J. Chem. Phys. 129, 224306 (2008)

lying compact isomer that could be solvated symmetrically
by an icosahedral shell of H, molecules. Of course, our cal-
culations deal with the potential energy surface while the
quantum nature of the H atoms must also be taken into ac-
count. Nevertheless, a recent path integral molecular dynam-
ics simulation of H¢*- and Dg*-clusters indicates that the
delocalization of H is not so large as to make classical struc-
tures meaningless, although it certainly must be considered
for quantitative discussions.®” One would also have to con-
sider the finite temperature of cluster ions in the experiment
which we have estimated above at 10 K.

We are aware of only one theoretical study of even-
numbered clusters larger than H6+, the ab initio molecular-
dynamics molecular MO study of Hn+ (n=6,8,10,12,14) by
Kurosaki and Takayanagi.5 ! Interestingly, they found that the
D,, isomer of Hy" remains the lowest isomer for all cluster
sizes even though the energy difference between isomers S2
(C,) and S1 (D,,;) decreases. The H, ligands are weakly
bound to the four corners of the nearly unperturbed Hy". The
binding energy of the H, ligands becomes extremely small
with increasing size; for H,,* it is within the computational
uncertainty of 0.05 eV. Ab initio studies of larger clusters at
higher accuracy will be needed to corroborate our interpre-
tation of the observed magic numbers at n=30 and 114 in
terms of icosahedral shell closure.

V. CONCLUSION

The experimental results reported here demonstrate that
large even-numbered H," can be formed by electron-impact
ionization of hydrogen clusters embedded in helium nano-
droplets. The abundance of even-numbered cluster ions rela-
tive to the next smaller odd-numbered cluster ions is quite
large, 4% on average. With the use of high-resolution mass
spectrometry we were able to greatly extend the size range
over which even-numbered H,* can be unambiguously iden-
tified, from n=10 to n=120.

Our mass spectra reproduce the enhanced stability of
H," previously reported by Kirchner and Bowers™ under
completely different experimental conditions. On the other
hand, the reaction channels observed for metastable dissocia-
tion of Hy " differ significantly from the earlier report. Our ab
initio study at the QCISD/aug-cc-pVTZ level of theory re-
produces the two lowest isomers at Hg" reported
previously,73’74 identifies another one only slightly higher
than the C; isomer, and three others at significantly higher
energies.

Intriguing drops in the ion abundance at n=30 and 114
suggest shell closures for Hs*(H,),, and Hg"(H,)s4, equiva-
lent to icosahedral shell closures observed for Xe,;", Xess",
and several other atomic and molecular van der Waals bound
cluster ions.'""~ 117118 Thig interpretation is consistent with
theoretical results which show that the D,; ground state iso-
mer of Hy" is nearly unperturbed when complexed with up to
four H, molecules.”’ Ab initio studies of larger cluster ions
will be needed to confirm our interpretation of icosahedral
shells. We note that magic number effects in neutral parahy-
drogen clusters (H,), have recently attracted attention.

: 19 11,13,14,119 . _ ..
Experiment ~ as well as theory ™ ™"~ indicate the presence
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of geometric shells in these quantum systems. The coexist-
ence of superfluid and solidlike phases at ultralow tempera-
tures is not an impediment to the existence of particularly
compact, stable cluster sizes.
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