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Abstract: 

 

The Connecticut Department of Energy and Environmental Protection (CT DEEP) seeks to better 

classify their streams into thermal regimes (cold, cold transitional, warm transitional, and warm 

water).  A prediction model was created based upon physical characteristics such that CT DEEP 

could classify streams into thermal regimes based upon the parameters described in Lyons et al. 

2009 and compare them to their own classification system.  Accurately classifying these thermal 

regimes determines the environmental protection provided to a stream as well as the potential for 

establishing fisheries.  Misclassifications of thermal regimes could prove detrimental to the 

ecosystem and its inhabitants if, for instance, a cold stream were misclassified as a warm stream; 

such streams risk being inadequately protected against warming such as runoff from impervious 

surfaces, potentially making the stream uninhabitable for native species.  It should be noted that 

different stream thermal regime classifications have different criteria for assessing their 

biological integrity and fundamental ecosystem health (Lyons et al. 2009).   

 

In order to classify streams into thermal regimes, a regression model and a neural network were 

created as predictive models of stream temperature using watershed parameters as independent 

variables.  The final regression model had lower predictive power compared to the neural 

network; however, it revealed a set of 5 robust parameters which were significant for all three 

Lyons parameters.  Using the Lyons parameters, the results of the neural network, regression 

model, and the provided measured data were classified into thermal regimes and compared with 

CT DEEP’s current classification system.  Comparison showed good results amongst the data 

modeled with the Lyons parameters; however, the CT DEEP classification system was biased 

towards cold classifications with no streams classified as being warm.  In order for these 
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classification methods to be comparable, CT DEEP will have to update their current 

classification model to account for anthropogenic influences.  It is only with these amendments 

that the CT DEEP classification model will be comparable with the results provided in their 

paper as well as determining the validity of using the Lyons thermal region classifications for use 

in Connecticut streams.   
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Introduction: 

 

The purpose of this project was to create a predictive model of Connecticut stream temperatures 

based upon physical parameters and then classify the streams into thermal regimes (cold, cold 

transitional, warm transitional and warm water).  The Connecticut Department of Energy and 

Environmental Protection (CT DEEP) has been interested in classifying streams using Lyons et 

al. (2009) thermal regimes established for Michigan and Wisconsin (Table 1 taken from Lyons et 

al. (2009)).  This classification system is depicted in Table 1: Lyons Thermal Regime 

Classifications.  The thermal regime which is of particular concern is cool water streams, which 

is not recognized as a major management category despite that walleye and northern pike, both 

major game fish, are classified as cool water species.  The misclassification of streams could also 

lead to missed opportunities to establish and expand fisheries, for example, trout can still survive 

in cool water streams, however; if a cool water stream is grouped with warm water streams, 

opportunities to expand trout fisheries may be overlooked (Ibid).   

 

Table 1: Lyons Thermal Regime Classifications 

Class and Subclass 
June – August Mean 

(º C) 

July Mean 

(ºC) 

Maximum Daily Mean 

(ºC) 

Cold Water < 17.0 < 17.5 < 20.7 

Cool Water 17.0 – 20.5 17.5 – 21.0 20.7 – 24.6 

     Cold Transitional 17.0 – 18.7 17.5 – 19.5 20.7 – 22.6 

     Warm Transitional 18.7 – 20.5 19.5 – 21.0 22.6 – 24.6 

Warm Water > 20.5 > 21.0 > 24.6 

  

 

CT DEEP is interested in how suitable this system is in classifying Connecticut streams 

compared to their current methods of classification.  Accurately classifying streams into thermal 

regimes is important in recognizing what species of fish can survive in a given ecosystem.  

Certain fish species, such as the eastern brook trout, a cold water species, are intolerant of large 
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temperature variations, and are thus unable to tolerate warmer temperatures.  Improper stream 

classifications can lead to streams which are inadequately protected against environmental 

pollutants such as heat fluxes.   

 

Proper stream classification is also vital in the ability to accurately measure the health of a 

stream and its inhabiting species.  Compared to other thermal regimes, cool water streams utilize 

their own bioassessment indices to assess their “biological integrity, and underlying ecosystem 

health (Lyons et al. 2009).”  If misclassified, a stream could be held to an inadequate measure of 

its biological integrity, and thus proper care may not be given to ensuring the health of the stream 

and the species which inhabit the ecosystem. Mike Beauchene of CT DEEP suggested that it is 

better to use temperatures to determine stream thermal regimes instead of the presence of fish 

species.  The reasoning is that while one fish species may be considered, say, a cold water 

species, that does determine that a species is incapable of living in streams outside of that 

thermal regime.  While this is not true for all species, it is still of note because it demonstrates 

that species classification is not an accurate constant by which thermal regimes should be 

measured and determined. 
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Methods: 

 

The first steps taken in creating the predictive models was determining and collecting the 

physical parameters which would be employed as independent variables for predicting stream 

temperature as the response.  After reading articles which attempted to create predictive stream 

temperature models based upon physical parameters, proposed physical parameters were 

identified (Table 2).  Information contained in this table served as a checklist of required data for 

the to-be-created predictive models. 
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Table 2: Proposed Physical Parameters from Publications 

Referenced Publication 
Independent Variables Used in Predictive 

Model 

Summer Stream Water Temperature 

Models for Great Lakes Streams: New 

York (McKenna et al. 2010) 

Average Elevation 

Average Slope 

Downstream Strahler Stream Order 

Groundwater Holding/Transporting Bedrock 

Index of Regional Heat Budget  

Percent Agricultural Cover 

Percent Forest Cover 

Percent Open Water  

Percent Sand/Gravel 

The Nature Conservancy: Eastern 

Brook Trout Joint Venture 

Air Temperature 

Geology 

Gradient  

Stream Size 

Defining and Characterizing 

Coolwater Streams and Their Fish 

Assemblages in Michigan and 

Wisconsin, USA (Lyons et al. 2009) 

Air Temperature 

Catchment Size 

Geology 

Land Cover 

Stream Network Position 

Numerically Optimized Empirical 

Modeling of Highly Dynamic, 

Spatially Expansive, and Behaviorally 

Heterogeneous Hydrologic Systems-

Part 2(Stewart et al. 2006) 

Area–Drainage Area  

Bedrock Depth–Depth to Bedrock (0−50 feet)  

Bedrock Depth–Depth to Bedrock (101−200 

feet)  

Bedrock Depth–Depth to Bedrock (51−100 feet) 

Bedrock Type–Sandstone  

Darcy Value–Darcy  

Land Cover–Agriculture 

Land Cover–Forest 

Land Cover–Urban 

Land Cover–Wetland 

Stream Network–Downstream Link  

Stream Network–Gradient  

Surficial Deposit Texture–Fine 

Surficial Deposit Texture–Medium  

 

Dr. Jennifer Jacobs provided a spreadsheet entitle “Stream Temp by Month” which contained 

monthly mean temperatures for 150 different streams (Figure 1).  For each stream, a 

corresponding latitude and longitude was provided for the point at which temperature 

measurements were taken.   Using the latitude and longitude of each temperature measurement, 
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the USGS web-based Geographic Information System (GIS) called StreamStats was used to 

delineate and acquire watershed characteristics.  Watersheds were delineated using the 

“Watershed Delineation from a Point” command and the “Basin Characteristics” command was 

used to determine watershed characteristics such as: drainage area, average elevation, and 

percent stratified drift.  The watersheds and their associated data acquired through the “Basin 

Characteristics” command were then converted to a shapefile and exported to ArcMap v10 for 

modeling and spatial analysis.   

 

 
Figure 1: Watershed Basins 
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After compiling the parameters in Table 2 and conducting extensive searches for the datasets, it 

was determined that some parameters were unnecessary or unobtainable.  Tabl3 gives the revised 

list of parameters that was used in the predictive model creation.  It should be noted that some of 

the data in Table 2 was determined to be redundant; for instance, “Downstream Strahler Stream 

Order” was determined to be representative of “Stream Size,” similarly, “Groundwater 

Holding/Transporting Bedrock” and “Darcy Value-Darcy” are synonymous with stratified drift, 

a parameter acquired from StreamStats.  Other data, such as depth to bedrock, was determined to 

be unavailable after failed pursuits for the data.  The unavailability of this data was later 

confirmed by David Bjerklie of USGS, and the parameter “Stream Network – Downstream 

Link” was determined to be insignificant in subsequent studies as indicated by Jana Stewart.   
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Table 3: Revised Physical Parameters from Publications 

Referenced Publication 
Independent Variables Used in Predictive 

Model 

Summer Stream Water Temperature 

Models for Great Lakes Streams: New 

York (McKenna et al. 2010) 

Average Elevation 

Average Slope 

Downstream Strahler Stream Order 

Groundwater holding/transporting bedrock 

Index of Regional Heat Budget  

Percent Agricultural Cover 

Percent Forest Cover 

Percent Open Water  

Percent Sand/Gravel 

The Nature Conservancy: Eastern 

Brook Trout Joint Venture 

Air Temperature 

Geology 

Gradient  

Stream Size 

Defining and Characterizing 

Coolwater Streams and Their Fish 

Assemblages in Michigan and 

Wisconsin, USA (Lyons et al. 2009) 

Air Temperature 

Catchment Size 

Geology 

Land Cover 

Stream Network Position 

Numerically Optimized Empirical 

Modeling of Highly Dynamic, 

Spatially Expansive, and Behaviorally 

Heterogeneous Hydrologic Systems-

Part 2(Stewart et al. 2006) 

Area–drainage area  

Bedrock depth–Depth to Bedrock (0−50 feet)  

Bedrock depth–Depth to Bedrock (101−200 

feet)  

Bedrock depth–Depth to Bedrock (51−100 

feet) 

Bedrock Type–Sandstone  

Darcy value–Darcy  

Land Cover–Agriculture 

Land Cover–Forest 

Land Cover–Urban 

Land Cover–Wetland 

Stream Network–Downstream Link  

Stream Network–Gradient  

Surficial Deposit Texture–Fine 

Surficial Deposit Texture–Medium  

 

 

The final physical parameters used for predictive modeling are given in Table 4. 
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Table 4: Final Parameters for Predictive Modeling 

Referenced Publication/ Individual 
Independent Variables Used in Predictive 

Model 

Summer Stream Water Temperature 

Models for Great Lakes Streams: New 

York (McKenna et al. 2010) 

Average Elevation 

Average Slope 

Percent Agricultural Cover 

Percent Forest Cover 

Percent Open Water  

Percent Sand/Gravel 

The Nature Conservancy: Eastern 

Brook Trout Joint Venture 

Air Temperature 

Geology 

Gradient  

Stream Size 

Defining and Characterizing 

Coolwater Streams and Their Fish 

Assemblages in Michigan and 

Wisconsin, USA (Lyons et al. 2009) 

Air Temperature 

Catchment Size 

Geology 

Land Cover 

Numerically Optimized Empirical 

Modeling of Highly Dynamic, 

Spatially Expansive, and Behaviorally 

Heterogeneous Hydrologic Systems-

Part 2(Stewart et al. 2006) 

Area–drainage area  

Land Cover–Agriculture 

Land Cover–Forest 

Land Cover–Urban 

Land Cover–Wetland 

Stream Network–Gradient  

Surficial Deposit Texture–Fine 

Surficial Deposit Texture–Medium  

Dr. Jennifer M. Jacobs Dams 

 

The inclusion of dams in the predictive model was a result of known shortcomings of the TNC 

temperature classification scheme as indicated by Michael Beauchene of CT DEEP.  The TNC 

model was constructed solely on physical parameters such as stream size, air temperature, stream 

gradient, and groundwater influence, while disregarding the influence of human disturbances.  

As specified by Mr. Beauchene, the TNC model could be implemented for undeveloped, 

undisturbed areas; however, the model lacks the scope to be representative of larger areas in 

which human influences are present.  This is the primary shortcoming of the model because 

Connecticut has undergone considerable landscape modifications since the era of the industrial 
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revolution. The results of these modifications are highly developed areas, increases in 

impervious surfaces, mass deforestation, and the construction of thousands of small dams.  

 

After the acquisition of all the GIS data for the physical parameters specified in Table 4, each 

parameter was spatially analyzed using ArcMap v10 software.  As depicted in Figure 1, spatial 

data from neighboring states were required due to the relative location of some of the delineated 

watershed basins to the Connecticut state line.  The GIS data for all of the physical parameters 

were obtained from Connecticut, New York, Rhode Island, and Massachusetts state agencies 

and/or universities.  Each physical parameter was clipped using the delineated watersheds, and 

were then linked with each watershed using the “Intersect” command in ArcMap.  Each physical 

parameter was represented in one layer through the “Union” command to form complete spatial 

coverage over all the watersheds.  It should be noted that for each watershed, the number of 

dams per watershed was determined and added to the corresponding attribute table in ArcMap.  

The dams were later represented as dams per square mile for statistical analysis.  The complete 

data layers were then exported to JMP where they were statistically analyzed. 

 

In preparing to analyze the data in JMP, it was noticed that some of the physical parameters had 

limited coverage, meaning that there existed some missing data measurements.  It was 

determined that twelve watersheds did not have complete coverage for stream size and stream 

gradient, and after reviewing the GIS data, certain streams had not been mapped for the given 

watersheds.  Later investigations confirmed that the initial stream sampling points were correct, 

and thus the resulting watershed delineations were correct as well.  When statistically analyzing 

the data, these incomplete sets were removed from the model, thus resulting in a total of 138 



May 2012 Estimating Connecticut Stream Temperatures Using Predictive Models Erik B. Carlson 

13 

 

watersheds with complete spatial coverage.  The watersheds which had to be removed due to 

incomplete coverage were as follows (by Site ID):  223, 285, 717, 1081, 1225, 1226, 1228, 1243, 

1697, 1735, 1748, and 2297.   

 

Prior to analyzing the data, it was suggested by Dr. Jacobs to first simplify the data into more 

generalized categories for ease of interpretation.  This proved useful in reducing the total number 

of physical parameters.  The physical parameter of surficial materials was simplified to the 

following categories:  alluvial deposits, artificial fill, fines, fluvial deposits, gravel, human 

transported material, loess, organic deposits, sand, swamp, till, and water.  The physical 

parameter of land cover was simplified to the following categories:  wetlands, water, forest, 

agriculture, residential, and developed.  All data were expressed in terms of percent per 

watershed.  To illustrate this, take a watershed of 10 square miles, and say that 1 square mile was 

till.  The physical parameter, % Till, would be equal to 10% in the data table. 

 

Before statistical analysis began, Mr. Beauchene provided a spreadsheet entitled “Real World 

Temperature Classifications” which listed streams by station ID and provided corresponding 

latitude and longitude of the points where temperature measurements were made.  This file 

contained 539 unique streams and their corresponding Lyons thermal regime classification as 

compared to the thermal regime classification currently used by The Nature Conservancy (TNC).  

These TNC classifications were exported to the watershed data table in JMP and were used for 

comparison of the classification results of the prediction models and measured data using the 

Lyons parameters.   
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Results: 

 

A regression analysis was first conducted on the entire data set in which a stepwise procedure 

was followed using P-value threshold as a stopping rule to determine which physical parameters 

were determined to be significant.  The default settings were used for the P-value threshold and 

were “Prob to Enter” equal to 0.25, and “Prob to Leave” equal to 0.1.  After the significant 

physical parameters were identified, a standard least squares regression model was created using 

those parameters.  A check was conducted to ensure that only significant variables had been 

selected by observing that their corresponding Prob > |t| and VIF were less than 0.05 and 10.0 

respectively.   

The definition of VIF and the justification for the selected cutoff is defined in Helsel and Hirsch 

as follows: 

“An excellent diagnostic for measuring multi-collinearity is the variance inflation 

factor (VIF) presented by Marquardt (1970). For variable j the VIF is: 

     
 

    
  

Where   
  is    from a regression of the jth explanatory variable on all of the 

other explanatory variables -- the equation used for adjustment of    in partial 

plots. The ideal is       , corresponding to   
   . Serious problems are 

indicated when         (  
     ). A useful interpretation of VIF is that multi-

collinearity "inflates" the width of the confidence interval for the jth regression 

coefficient by the amount      compared to what it would be with a perfectly 

independent set of explanatory variables (Helsel and Hirsch, 1992).” 
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After the creation of the regression models for each of the three Lyons parameters, a regression 

line was fit to the data to determine the regression formula.  This process was repeated for all 

Lyons parameters. 

 

Prior to the creation of the neural network, it was suggested by Dr. Phillip Ramsey that the 

physical parameters be run through JMP’s multivariate analysis to identify any correlation 

between the independent variables.  Independent variables which had correlation values close or 

equal to -1.00 or 1.00 are considered to be equal, meaning that they represent the same 

phenomenon.  All physical parameters that had correlations of 0.75 or higher were removed per 

recommendation of Stewart et al. (2006).  As suggested by Dr. Ramsey, the multivariate 

platform was run in JMP to try and reduce the number of correlated independent variables fed 

into the neural network.  Although the neural network has the ability to account for highly 

correlated input parameters, and has the ability to derive highly complex relationships, 

simplifications were desirable to attempt to gain a better understanding of the underlying 

relationship between the physical parameters and stream temperature. 

 

The created neural network followed the K-Fold cross-validation technique based upon the small 

dataset size (less than approximately 1,000 observations).  K-Fold cross validation is a method in 

which data is randomly partitioned into K subsets.  Each of the K subsets is used to validate the 

model fit on the rest of the data, thus fitting a total of K models.  The model which gives the best 

validation is used as the final model (Ramsey, 2011).  A typical range of K values is from 5 to 

20, with 10 being a common selection (Ibid.).  For the purposes of this neural network K value of 
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10 was chosen.  A single hidden layer with 34 neurons was selected for the neural network.  The 

number of neurons was selected based upon Equation 1 in McKenna (2010): 

   
 

 
(     )  √       (1) 

where NH is the number of neurons in the hidden layer, NI is the number of input neurons, NO is 

the number of output neurons, and DT is the number of observations in the training data set.  For 

the purposes of the neural network, NI = 44, NO = 1, and DT = 138, thus resulting in a NH ≈ 34. 

 

After reviewing the data, Dr. Jacobs identified a conceptual model consisting of five parameters 

(Table 5) and tested their significance against one of the Lyons parameters in a regression 

analysis.  This regression provided good results and then the same five parameters were tested 

against the remaining two Lyons parameters.  These parameters were found to be significant 

across all three Lyons parameters, thus indicating that these five parameters were robust and thus 

indicating a fundamental relationship with stream temperature.  Despite the lower predictive 

power (low to mid-0.40s), the consistent set of five parameters is in accordance with how 

scientists attempt to utilize a consistent set of physical parameters to explain streamflow values.  

Higher prediction results are expected if a non-linear regression analysis were performed on the 

data.  This is because it is believed that the relationship between the physical parameters and 

stream temperature cannot be explained by a simple linear regression model, and that a more 

complex, non-linear relationship exists between the independent and response variables.   

 

The benefit of using a regression model is that a relationship between input variables and the 

response is easily identified by the regression equation that is fit for the model.  A regression 

analysis provides easy to interpret relationships between variables, and Table 5 was created from 
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the regression equations (shown in Figure 3) for the Lyons parameters where a ‘+’ indicates a 

positive correlation, and a ‘-‘ indicates a negative correlation between the input and response 

variables.  For example, it is intuitive that the more tree cover found onsite (% Forest), the more 

shade one would expect which would block sunlight, and thus reduce the temperature of the 

stream.   

Table 5: Significant Independent Variables for Regression Analysis 

Measured 

Parameters 

Drainage 

Area 

Stratified 

Drift 

% per WS, 

Creek: 

>=3.861<38.61 

sq.mi., Very 

Low Gradient: 

<0.02% 

% per WS, 

Headwater: 

0<3.861 

sq.mi., 

High 

Gradient: 

>=2 < 5% 

% per WS, 

Medium 

Tributary 

River  

>=200<1000  

sq.mi., High 

Gradient: 

>=2 < 5% 

% Forest 

Maximum 

Daily Mean 
+ 0.0323 - 0.0535 + 0.1850 - 0.01954 - 173.8 - 0.0364 

Jun-Aug Mean + 0.0216 - 0.0355 + 0.1430 - 0.0204 - 125.5 - 0.0252 

July + 0.0215 - 0.0394 + 0.1403 - 0.0261 - 132.4 - 0.0288 

 

While the neural network showed considerably better predictive power compared to the 

regression model results, one should cautious before taking these results at face value.  These 

models inherently have too many parameters and over-fitting is a chronic issue with the neural 

network model (Ramsey, 2011).  Neural networks also have the tendency to be unstable, 

meaning that their results can vary greatly based upon the dataset which is used to train and 

validate the models.   

 

The following are critiques and criticisms of the implementation of neural networks for 

predictive modeling by Dr. Ramsey (Ramsey, 2011):  

o “Many neural network developers knew nothing of statistics or statistical modeling.  This 

often results in naïve, time-wasting rediscovery of old statistical methods like nonlinear 
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regression and a dizzying array of arcane and confusing terminology… Although neural 

networks have enjoyed great popularity among non-statisticians, their efficacy as a 

modeling strategy is not uniformly agreed upon by professional statisticians.”   

o “Models suffer from chronic overfitting and a lack of interpretability, thus they are truly a 

black box modeling strategy.”   

o “Some advantage may be gained in modeling complex systems with many inputs and this 

is probably their greatest strength.”   

o “Neural nets are computationally intense and it may take a long time to converge for a 

large problem, if convergence occurs.” 

 

In a neural network, each input is assigned a positive or negative coefficient, or weight ( ‘w’ as 

indicated in Figure 3a), when the model is first created.  The most common type of neural 

network has three layers: an input layer, an output layer, and one “hidden” layer where data 

processing occurs.  Each node within the hidden layer has an activation function associated with 

it which transforms the inputs into a signal, whereas each hidden node is modeled using the 

sigmoid function, a special type of logistic function, which is often used to model complex, 

nonlinear relationships (Figure 2).   
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Figure 2: Sigmoid Function (Ramsey, 2011) 

 

JMP version 9 uses the hyperbolic tangent function instead of the logistic function, due to its 

more flexible nature.  The use of the tanh() function allows the neural network model to 

approximate highly nonlinear and complicated relationships between inputs and outputs.  Using 

these hyperbolic tangent functions, the outputs of the hidden nodes are turned into predictions, 

through the utilization of standard nonlinear least squares regression methods for each node.  

Figure 3 provides a pictorial representation of neural networks 

 

Figure 3a & 3b (Ramsey, 2011) 

 
Figure 3a: Node                                                             Figure 3b: Complete Neural Network 
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Tables 6 through 8 summarize the results of the regression analysis.  For JMP output, refer to 

Appendix A. 

 

Table 6: Regression Results:  June - August Mean 

Summary of Fit 

R
2 

0.440 

RMSE 1.357 

N 138 

 

Parameter Estimates P-Value 

Drainage Area < 0.0001 

Stratified Drift 0.0006 

% per WS, Creek: >=3.861<38.61 sq.mi., Very 

Low Gradient: <0.02% 
< 0.0001 

% per WS, Headwater: 0<3.861 sq.mi., High 

Gradient: >=2 < 5% 
0.0002 

% per WS, Medium Tributary River  

>=200<1000  sq.mi., High Gradient: >=2 < 5% 
< 0.0001 

% Forest 0.0052 

 

Table 7: Regression Results:  July Mean 

Summary of Fit 

R
2 

0.401 

RMSE 1.568 

N 138 

 

Parameter Estimates P-Value 

Drainage Area < 0.0001 

Stratified Drift 0.0009 

% per WS, Creek: >=3.861<38.61 sq.mi., Very 

Low Gradient: <0.02% 
< 0.0001 

% per WS, Headwater: 0<3.861 sq.mi., High 

Gradient: >=2 < 5% 
< 0.0001 

% per WS, Medium Tributary River  

>=200<1000  sq.mi., High Gradient: >=2 < 5% 
< 0.0001 

% Forest 0.0057 

 

 

 

 

 



May 2012 Estimating Connecticut Stream Temperatures Using Predictive Models Erik B. Carlson 

21 

 

 

Table 8: Regression Results:  Maximum Daily Mean 

Summary of Fit 

R
2 

0.472 

RMSE 1.715 

N 138 

 

Parameter Estimates P-Value 

Drainage Area < 0.0001 

Stratified Drift < 0.0001 

% per WS, Creek: >=3.861<38.61 sq.mi., Very 

Low Gradient: <0.02% 
< 0.0001 

% per WS, Headwater: 0<3.861 sq.mi., High 

Gradient: >=2 < 5% 
0.0049 

% per WS, Medium Tributary River  

>=200<1000  sq.mi., High Gradient: >=2 < 5% 
< 0.0001 

% Forest 0.0015 
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Figure 4:  Regression Results of Lyons Parameters- Predicted vs. Measured 
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Tables 9 through 11 summarize the results of the neural networks.  For JMP output, refer to 

Appendix A.  The N value for the Training data represents the K subset which was used to train 

the model, and the N value for the Validation data represents the remaining data used to validate 

the models.  

 

 

Table 9: Neural Network Results:  June 

- August Mean 

Training 

R
2 

0.977 

RMSE 0.278 

N 14 

Validation 

R
2 

0.937 

RMSE 0.271 

N 124 

 

Table 10: Neural Network Results:  

July Mean 

Training 

R
2 

0.981 

RMSE 0.281 

N 14 

Validation 

R
2 

0.986 

RMSE 0.1412 

N 124 

 

Table 11: Neural Network Results:  

Maximum Daily Mean 

Training 

R
2 

0.986 

RMSE 0.280 

N 14 

Validation 

R
2 

0.945 

RMSE 0.407 

N 124 
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Figure 5: Neural Network Results of Lyons Parameters- Predicted vs. Measured 
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Figure 6: Classification Results and Comparisons 

 

Classifications were conducted using the Lyons criteria for the results of the regression analysis, 

the neural network model, and for the provided measured data.  These three were then compared 

to TNC classifications for the same set of streams.  The thermal regime classifications and 

comparisons can be found above it Figure 6.  It should be noted that a “2 of 3” rule was 

implemented in classifying streams with the Lyons parameters, meaning that if two of the three 

thresholds were satisfied, then the stream was designated as that thermal regime.  Results from 

the neural network were nearly identical to that of the measured data.  These results were 

expected due to the high predictive power found in the results of the Lyons parameters (See 

Appendix A).  The regression model also performed well in classifying the thermal regimes with 

the exception of missing all cold water classifications.  The TNC classification system for the 

analyzed streams has a bias towards cold water streams, a low number of sites being labeled as 

warm transitional, and no streams being classified as warm water.  While the neural network is 
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unstable and tends to over-estimate models, it is reassuring to see that the regression analysis was 

also doing an adequate job at classifying Lyons thermal regimes. 
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Conclusion: 

 

The TNC classification system does not consider human disturbances such as dams and 

impervious cover.  Thus it provides likely regimes using physical parameters when the exclusion 

of anthropogenic influences is desired.  However, these influences should be accurately 

accounted for, followed by a reclassification of the streams.  Dams will also have to be 

reassessed in regards to how they are modeled in the regression analysis because they currently 

are considered statistically insignificant.  Due to Connecticut’s history of industrialization and 

large quantity of dams, the current measure of dams per square mile is inadequate and must be 

refined.  According to A. Oliverio (2012 personal communication), “a better measure of the 

influence of dams on receiving streams is to measure the surface area of the water behind the 

dam.”  This water is stagnant and is thus more susceptible to the influences of solar heat fluxes 

than moving waterbodies.  Accurately accounting for dams, withdrawals, and impervious 

surfaces in the TNC classification system would modify the current model to include 

anthropogenic influences.  It is only after that these modifications are accomplished that a 

meaningful comparison of the Lyons thermal regime classifications and TNC classifications can 

be accomplished.  

 

When reassessing the models and the parameters, care should be taken in ensuring the data 

utilized in the models is accurate and applicable for its intended use.  In speaking with Dr. 

Ramsey about the possibility of highly correlated physical parameters, he mentioned that the 

methodology in modeling the stream size and stream gradient was flawed.  Instead of having two 

separate measures for these parameters, they were grouped together as one variable to describe a 

given section of a stream.  As an example, given a stream, a given length would be analyzed, and 
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for that given length, the size of the stream would be classified and then the gradient of that same 

section would be classified.  It is recommended for future studies that these variables be 

separated to better model and understand their relationships with stream temperature.   

 

Poor results of the regression models indicate that either the parameters measured were poor 

linear independent variables for temperature predictions or that a more complicated relationship 

exists which was not fully realized due to the exclusion of some unbeknownst data set(s).  

Despite these shortcomings, important relationships can be established still be established 

between stream temperature and the physical parameters.  The set of five consistent significant 

physical parameters provides a basic relationship and understanding of the input and output 

relationship; however, it fails to describe the entire relationship, as is evident by the predictive 

power (R
2
) of the three Lyons parameters.  To fully realize these relationships, a new, nonlinear 

regression model should be fit to all the physical parameters, and thus gain a better 

understanding of the relationship between the data.  More data should also be included in the 

model in an attempt to account for any significant physical parameters which may have been 

omitted from the original model.  Determining these other significant parameters could be a 

matter of testing additional parameters for significance in a prediction model.  Running a non-

linear regression model on the original data will determine if additional physical parameters are 

need based upon the predictive power (R
2
) of the nonlinear regression model as well as if any 

newly significant physical parameters are present which may have neglected in the linear 

regression models.  A nonlinear regression model would yield lower RMSE values compared to 

the current models, where the lower the RMSE, the smaller the difference between the actual and 

the predicted vales, and thus the more accurate the model. 
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While neural networks have been common practice in stream temperature prediction models, 

they act as a “black box” and are thus are difficult to interpret.  Neural networks also have a 

tendency to overestimate the relationship between data, and are usually unstable.  This instability 

is the result of the ease in which the model can be altered and thus deemed unsuitable for 

predicting data based upon the data training set used to create, and later validate, the 

relationships between data.  Unlike the regression model, the neural network provides little to no 

insight as to how variables relate to each other.  Depending on the intended application of the 

predictive model, this may be undesirable if a clear relationship between the input and response 

variables is needed. 

 

Whether a regression model or a neural network is utilized, the user will have to decide which 

better suits their needs.  A neural network may be necessary to understand highly complex, 

nonlinear relationships; however, the user must be aware of the inherent limitations of the model 

and must be cautious before accepting the results at face value.  While neural networks can 

provide desirable results and analyze and determine the relationship between highly correlated 

variables and complex relationships, they should be used only if one truly understands their 

underlying theory.  The user should be aware of their potential shortcomings and the methods 

required to mitigate these shortcomings through validation of the created models.  In comparison 

with the neural network, the regression model provides a clear picture of the relationship 

between independent and response variables.  In determining which of the two model types to 

use, one should decide which is more desirable for the applications of the study: predictive 

power or parameter significance.   
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It is recommended that for future work with predictive models that the regression model be 

updated and the neural networks established for this study be validated with independent 

datasets.  The regression model should be recreated using all physical variables again, with the 

exception that a nonlinear regression analysis be conducted.  From the results of the regression 

model it is expected that a nonlinear relationship was present amongst the data, and thus 

conducting a nonlinear regression analysis should lead better results.  Validation of the neural 

network should be conducted by applying an independent dataset to determine the stability of the 

models.  Stability will be determined by how well the created models predict values with the 

independent dataset which was not a part of the creation of the neural networks.  One of the most 

important characteristics which will have to be accounted for is warming due to anthropogenic 

influences.  During the creation of the regression model, the influence of dams was found to be 

insignificant.  It is hypothesized that dams would have a significant influence on stream 

temperature and therefore it would be advantageous to appropriately measure their influence in 

future models.   
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Appendix A 

Statistical Analysis Results 
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5 Parameter Regression Analysis: Regression Results (Figure A1, A2, & A3) 

 

 

 

 

 

 
 

Figure A1:  Regression Results: June – August Mean 
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Figure A2:  Regression Results: Maximum Daily Mean 
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Figure A3:  Regression Results: July Mean 
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5 Parameter Regression Analysis: Predicted vs. Measured (Figure A4, A5, & A6) 

 

 
Figure A4:  Regression Predicted vs. Measured: June – August Mean 
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Figure A5:  Regression Predicted vs. Measured: Maximum Daily Mean 
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Figure A6: Regression Predicted vs. Measured: July Mean 
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Neural Network Analysis: Model Results (Figure A7, A8, & A9) 

 

 
Figure A7: Neural Network Results: July Mean 

 

 

 
Figure A8: Neural Network Results: June - August Mean 

 

 

 
Figure A9: Neural Network Results: Maximum Daily Mean 
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Neural Network Analysis: Predicted vs. Measured (Figure A10, A11, & A12) 

 

 
Figure A10: Neural Network Predicted vs. Measured: July Mean 
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Figure A11: Neural Network Predicted vs. Measured: June - August Mean 
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Figure A12: Neural Network Predicted vs. Measured: Maximum Daily Mean 
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