Abstract

A maximum-likelihood estimator is used to extract differential phase measurements from noisy seafloor echoes received at pairs of transducers mounted on either side of the SeaMARC II bathymetricsidescan sonar system. Carrier frequencies for each side are about 1 kHz apart, and echoes from a transmitted pulse 2 ms long are analyzed. For each side, phase difference sequences are derived from the full complex data consisting of base-banded and digitized quadrature components of the received echoes. With less bias and a lower variance, this method is shown to be more efficient than a uniform mean estimator. It also does not exhibit the angular or time ambiguities commonly found in the histogram method used in the SeaMARC II system. A figure for the estimation uncertainty of the phasedifference is presented, and results are obtained for both real and simulated data. Based on this error estimate and an empirical verification derived through coherent ping stacking, a single filter length of 100 ms is chosen for data processing applications

Publication Date

7-1992

Journal or Conference Title

IEEE Journal of Oceanic Engineering

Volume

17, Issue 3

Pages

239-251

Publisher Place

Washington DC, USA

Publisher

IEEE

Digital Object Identifier (DOI)

10.1109/48.153441

Document Type

Journal Article

Share

COinS