Abstract

When ray bending corrections are applied to multibeam echosounder (MBES) data, it is assumed that the varying layers of sound speed lie along horizontally stratified planes. In many areas internal waves occur at the interface where the water’s density changes abruptly (a pycnocline), this density gradient is often associated with a strong gradient in sound speed (a velocline). The internal wave introduces uncertainty into the echo soundings through two mechanisms: (1) tilting of the velocline, and (2) vertical oscillation of the velocline’s depth. A model has been constructed in order to examine how these effects degrade the accuracy of MBES measurements. The model numerically simulates the 3D ray paths of MBES soundings for a synthetic flat seafloor, as though the soundings have been collected through a user-defined internal wave. Along with sound speed information, the ray paths are used to estimate travel times which are then utilized as inputs for a conventional 2D ray trace. The discrepancy between the 3D and 2D ray traced solutions serve as an estimate of uncertainty. The same software can be extended to model the expected anomalies associated with tidal fronts and other phenomena that result in significant tilting or oscillation of the velocline. A case study was undertaken using observed internal wave parameters on the Scotian Shelf. The case study examines how survey design parameters such as line spacing, direction of survey lines, and water column sampling density can influence the uncertainty introduced by internal waves. In particular, an examination is undertaken in which 2D ray tracing models are augmented with MBES water column imaging of the velocline. The investigation shows that internal waves have the potential to cause vertical uncertainties exceeding IHO standards and that the uncertainty can potentially be mitigated through appropriate survey design. Results from the case study also indicate that acoustic tracking of the velocline has the potential to counteract the effects of internal waves through augmentation of 2D ray tracing models. This technique is promising, however, much more research and field testing is required to ascertain the practicality, reliability and repeatability of such an approach.

Department

Center for Coastal and Ocean Mapping

Publication Date

6-2010

Journal Title

Canadian Hydrographic Conference (CHC)

Conference Date

Jun 21 - Jun 23, 2010

Publisher Place

Quebec City, Quebec, Canada

Publisher

Canadian Hydrographic Association

Document Type

Conference Proceeding

Share

COinS