Title

Quantitative Texton Sequences for Legible Bivariate Maps

Abstract

Representing bivariate scalar maps is a common but difficult visualization problem. One solution has been to use two dimensional color schemes, but the results are often hard to interpret and inaccurately read. An alternative is to use a color sequence for one variable and a texture sequence for another. This has been used, for example, in geology, but much less studied than the two dimensional color scheme, although theory suggests that it should lead to easier perceptual separation of information relating to the two variables. To make a texture sequence more clearly readable the concept of the quantitative texton sequence (QTonS) is introduced. A QTonS is defined a sequence of small graphical elements, called textons, where each texton represents a different numerical value and sets of textons can be densely displayed to produce visually differentiable textures. An experiment was carried out to compare two bivariate color coding schemes with two schemes using QTonS for one bivariate map component and a color sequence for the other. Two different key designs were investigated (a key being a sequence of colors or textures used in obtaining quantitative values from a map). The first design used two separate keys, one for each dimension, in order to measure how accurately subjects could independently estimate the underlying scalar variables. The second key design was two dimensional and intended to measure the overall integral accuracy that could be obtained. The results show that the accuracy is substantially higher for the QTonS/color sequence schemes. A hypothesis that texture/color sequence combinations are better for independent judgments of mapped quantities was supported. A second experiment probed the limits of spatial resolution for QTonSs.

Publication Date

11-2009

Journal or Conference Title

IEEE Transactions on Visualization and Computer Graphics

Volume

15, Number 6

Pages

1523-1529

Publisher Place

Washington DC, USA

Publisher

IEEE

Digital Object Identifier (DOI)

10.1109/TVCG.2009.175

Document Type

Journal Article